Package | Description |
---|---|
org.apache.commons.math3.distribution |
Implementations of common discrete and continuous distributions.
|
org.apache.commons.math3.filter |
Implementations of common discrete-time linear filters.
|
org.apache.commons.math3.fitting.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
org.apache.commons.math3.linear |
Linear algebra support.
|
org.apache.commons.math3.ml.clustering |
Clustering algorithms.
|
org.apache.commons.math3.optim.nonlinear.scalar |
Algorithms for optimizing a scalar function.
|
org.apache.commons.math3.optim.nonlinear.scalar.noderiv |
This package provides optimization algorithms that do not require derivatives.
|
org.apache.commons.math3.optim.nonlinear.vector |
Algorithms for optimizing a vector function.
|
org.apache.commons.math3.optim.nonlinear.vector.jacobian |
This package provides optimization algorithms that require derivatives.
|
org.apache.commons.math3.optimization |
All classes and sub-packages of this package are deprecated.
|
org.apache.commons.math3.optimization.direct |
This package provides optimization algorithms that don't require derivatives.
|
org.apache.commons.math3.optimization.general |
This package provides optimization algorithms that require derivatives.
|
org.apache.commons.math3.optimization.linear |
This package provides optimization algorithms for linear constrained problems.
|
org.apache.commons.math3.random |
Random number and random data generators.
|
org.apache.commons.math3.stat.correlation |
Correlations/Covariance computations.
|
org.apache.commons.math3.stat.descriptive |
Generic univariate summary statistic objects.
|
org.apache.commons.math3.stat.descriptive.moment |
Summary statistics based on moments.
|
org.apache.commons.math3.stat.inference |
Classes providing hypothesis testing.
|
org.apache.commons.math3.stat.regression |
Statistical routines involving multivariate data.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
MultivariateNormalDistribution.covarianceMatrix
Covariance matrix.
|
private RealMatrix |
MultivariateNormalDistribution.covarianceMatrixInverse
The matrix inverse of the covariance matrix.
|
private RealMatrix |
MultivariateNormalDistribution.samplingMatrix
Matrix used in computation of samples.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
MultivariateNormalDistribution.getCovariances()
Gets the covariance matrix.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
KalmanFilter.controlMatrix
The control matrix, equivalent to B.
|
private RealMatrix |
DefaultProcessModel.controlMatrix
The control matrix, used to integrate a control input into the state estimation.
|
private RealMatrix |
KalmanFilter.errorCovariance
The error covariance matrix, equivalent to P.
|
private RealMatrix |
DefaultProcessModel.initialErrorCovMatrix
The initial error covariance matrix of the observed process.
|
private RealMatrix |
KalmanFilter.measurementMatrix
The measurement matrix, equivalent to H.
|
private RealMatrix |
DefaultMeasurementModel.measurementMatrix
The measurement matrix, used to associate the measurement vector to the
internal state estimation vector.
|
private RealMatrix |
KalmanFilter.measurementMatrixT
The transposed measurement matrix.
|
private RealMatrix |
DefaultMeasurementModel.measurementNoise
The measurement noise covariance matrix.
|
private RealMatrix |
DefaultProcessModel.processNoiseCovMatrix
The process noise covariance matrix.
|
private RealMatrix |
DefaultProcessModel.stateTransitionMatrix
The state transition matrix, used to advance the internal state estimation each time-step.
|
private RealMatrix |
KalmanFilter.transitionMatrix
The transition matrix, equivalent to A.
|
private RealMatrix |
KalmanFilter.transitionMatrixT
The transposed transition matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
DefaultProcessModel.getControlMatrix()
Returns the control matrix.
|
RealMatrix |
ProcessModel.getControlMatrix()
Returns the control matrix.
|
RealMatrix |
KalmanFilter.getErrorCovarianceMatrix()
Returns a copy of the current error covariance matrix.
|
RealMatrix |
DefaultProcessModel.getInitialErrorCovariance()
Returns the initial error covariance matrix.
|
RealMatrix |
ProcessModel.getInitialErrorCovariance()
Returns the initial error covariance matrix.
|
RealMatrix |
DefaultMeasurementModel.getMeasurementMatrix()
Returns the measurement matrix.
|
RealMatrix |
MeasurementModel.getMeasurementMatrix()
Returns the measurement matrix.
|
RealMatrix |
DefaultMeasurementModel.getMeasurementNoise()
Returns the measurement noise matrix.
|
RealMatrix |
MeasurementModel.getMeasurementNoise()
Returns the measurement noise matrix.
|
RealMatrix |
DefaultProcessModel.getProcessNoise()
Returns the process noise matrix.
|
RealMatrix |
ProcessModel.getProcessNoise()
Returns the process noise matrix.
|
RealMatrix |
DefaultProcessModel.getStateTransitionMatrix()
Returns the state transition matrix.
|
RealMatrix |
ProcessModel.getStateTransitionMatrix()
Returns the state transition matrix.
|
Constructor and Description |
---|
DefaultMeasurementModel(RealMatrix measMatrix,
RealMatrix measNoise)
Create a new
MeasurementModel , taking RealMatrix objects
as input parameters for the respective measurement matrix and noise. |
DefaultProcessModel(RealMatrix stateTransition,
RealMatrix control,
RealMatrix processNoise,
RealVector initialStateEstimate,
RealMatrix initialErrorCovariance)
Create a new
ProcessModel , taking double arrays as input parameters. |
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
LeastSquaresFactory.LocalLeastSquaresProblem.UnweightedEvaluation.jacobian
Derivative at point.
|
private RealMatrix |
LeastSquaresBuilder.weight
weight matrix
|
private RealMatrix |
DenseWeightedEvaluation.weightSqrt
reference to the weight square root matrix
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
LeastSquaresFactory.LocalValueAndJacobianFunction.computeJacobian(double[] params)
Compute the Jacobian.
|
RealMatrix |
ValueAndJacobianFunction.computeJacobian(double[] params)
Compute the Jacobian.
|
RealMatrix |
AbstractEvaluation.getCovariances(double threshold)
Get the covariance matrix of the optimized parameters.
|
RealMatrix |
LeastSquaresProblem.Evaluation.getCovariances(double threshold)
Get the covariance matrix of the optimized parameters.
|
RealMatrix |
OptimumImpl.getCovariances(double threshold)
Get the covariance matrix of the optimized parameters.
|
RealMatrix |
DenseWeightedEvaluation.getJacobian()
Get the weighted Jacobian matrix.
|
RealMatrix |
LeastSquaresFactory.LocalLeastSquaresProblem.UnweightedEvaluation.getJacobian()
Get the weighted Jacobian matrix.
|
RealMatrix |
LeastSquaresFactory.LocalLeastSquaresProblem.LazyUnweightedEvaluation.getJacobian()
Get the weighted Jacobian matrix.
|
RealMatrix |
LeastSquaresProblem.Evaluation.getJacobian()
Get the weighted Jacobian matrix.
|
RealMatrix |
OptimumImpl.getJacobian()
Get the weighted Jacobian matrix.
|
private static RealMatrix |
LeastSquaresFactory.squareRoot(RealMatrix m)
Computes the square-root of the weight matrix.
|
Modifier and Type | Method and Description |
---|---|
private static Pair<RealMatrix,RealVector> |
GaussNewtonOptimizer.computeNormalMatrix(RealMatrix jacobian,
RealVector residuals)
Compute the normal matrix, JTJ.
|
Pair<RealVector,RealMatrix> |
LeastSquaresFactory.LocalValueAndJacobianFunction.value(RealVector point)
Compute the function value and its Jacobian.
|
Pair<RealVector,RealMatrix> |
MultivariateJacobianFunction.value(RealVector point)
Compute the function value and its Jacobian.
|
Modifier and Type | Method and Description |
---|---|
private static Pair<RealMatrix,RealVector> |
GaussNewtonOptimizer.computeNormalMatrix(RealMatrix jacobian,
RealVector residuals)
Compute the normal matrix, JTJ.
|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations,
boolean lazyEvaluation,
ParameterValidator paramValidator)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
private LevenbergMarquardtOptimizer.InternalData |
LevenbergMarquardtOptimizer.qrDecomposition(RealMatrix jacobian,
int solvedCols)
Decompose a matrix A as A.P = Q.R using Householder transforms.
|
protected abstract RealVector |
GaussNewtonOptimizer.Decomposition.solve(RealMatrix jacobian,
RealVector residuals)
Solve the linear least squares problem Jx=r.
|
private static RealMatrix |
LeastSquaresFactory.squareRoot(RealMatrix m)
Computes the square-root of the weight matrix.
|
LeastSquaresBuilder |
LeastSquaresBuilder.weight(RealMatrix newWeight)
Configure the weight matrix.
|
static LeastSquaresProblem |
LeastSquaresFactory.weightMatrix(LeastSquaresProblem problem,
RealMatrix weights)
Apply a dense weight matrix to the
LeastSquaresProblem . |
Constructor and Description |
---|
DenseWeightedEvaluation(LeastSquaresProblem.Evaluation unweighted,
RealMatrix weightSqrt)
Create a weighted evaluation from an unweighted one.
|
UnweightedEvaluation(RealVector values,
RealMatrix jacobian,
RealVector target,
RealVector point)
Create an
LeastSquaresProblem.Evaluation with no weights. |
Modifier and Type | Interface and Description |
---|---|
interface |
SparseRealMatrix
Marker interface for
RealMatrix implementations that require sparse backing storage |
Modifier and Type | Class and Description |
---|---|
class |
AbstractRealMatrix
Basic implementation of RealMatrix methods regardless of the underlying storage.
|
class |
Array2DRowRealMatrix
Implementation of
RealMatrix using a double[][] array to
store entries. |
class |
BlockRealMatrix
Cache-friendly implementation of RealMatrix using a flat arrays to store
square blocks of the matrix.
|
class |
DiagonalMatrix
Implementation of a diagonal matrix.
|
class |
OpenMapRealMatrix
Sparse matrix implementation based on an open addressed map.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
BiDiagonalTransformer.cachedB
Cached value of B.
|
private RealMatrix |
EigenDecomposition.cachedD
Cached value of D.
|
private RealMatrix |
HessenbergTransformer.cachedH
Cached value of H.
|
private RealMatrix |
QRDecomposition.cachedH
Cached value of H.
|
private RealMatrix |
LUDecomposition.cachedL
Cached value of L.
|
private RealMatrix |
CholeskyDecomposition.cachedL
Cached value of L.
|
private RealMatrix |
CholeskyDecomposition.cachedLT
Cached value of LT.
|
private RealMatrix |
SchurTransformer.cachedP
Cached value of P.
|
private RealMatrix |
HessenbergTransformer.cachedP
Cached value of P.
|
private RealMatrix |
LUDecomposition.cachedP
Cached value of P.
|
private RealMatrix |
RRQRDecomposition.cachedP
Cached value of P.
|
private RealMatrix |
SchurTransformer.cachedPt
Cached value of PT.
|
private RealMatrix |
HessenbergTransformer.cachedPt
Cached value of Pt.
|
private RealMatrix |
QRDecomposition.cachedQ
Cached value of Q.
|
private RealMatrix |
TriDiagonalTransformer.cachedQ
Cached value of Q.
|
private RealMatrix |
TriDiagonalTransformer.cachedQt
Cached value of Qt.
|
private RealMatrix |
QRDecomposition.cachedQT
Cached value of QT.
|
private RealMatrix |
QRDecomposition.cachedR
Cached value of R.
|
private RealMatrix |
SingularValueDecomposition.cachedS
Cached value of S (diagonal) matrix.
|
private RealMatrix |
SchurTransformer.cachedT
Cached value of T.
|
private RealMatrix |
TriDiagonalTransformer.cachedT
Cached value of T.
|
private RealMatrix |
BiDiagonalTransformer.cachedU
Cached value of U.
|
private RealMatrix |
SingularValueDecomposition.cachedU
Cached value of U matrix.
|
private RealMatrix |
LUDecomposition.cachedU
Cached value of U.
|
private RealMatrix |
SingularValueDecomposition.cachedUt
Cached value of transposed U matrix.
|
private RealMatrix |
EigenDecomposition.cachedV
Cached value of V.
|
private RealMatrix |
BiDiagonalTransformer.cachedV
Cached value of V.
|
private RealMatrix |
SingularValueDecomposition.cachedV
Cached value of V matrix.
|
private RealMatrix |
EigenDecomposition.cachedVt
Cached value of Vt.
|
private RealMatrix |
SingularValueDecomposition.cachedVt
Cached value of transposed V matrix.
|
private RealMatrix |
RRQRDecomposition.Solver.p
A permutation matrix for the pivots used in the QR decomposition
|
private RealMatrix |
SingularValueDecomposition.Solver.pseudoInverse
Pseudo-inverse of the initial matrix.
|
private RealMatrix |
RectangularCholeskyDecomposition.root
Permutated Cholesky root of the symmetric positive semidefinite matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
AbstractRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
RealMatrix |
RealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
static RealMatrix |
MatrixUtils.blockInverse(RealMatrix m,
int splitIndex)
Computes the inverse of the given matrix by splitting it into
4 sub-matrices.
|
abstract RealMatrix |
AbstractRealMatrix.copy()
Returns a (deep) copy of this.
|
RealMatrix |
DiagonalMatrix.copy()
Returns a (deep) copy of this.
|
RealMatrix |
RealMatrix.copy()
Returns a (deep) copy of this.
|
RealMatrix |
Array2DRowRealMatrix.copy()
Returns a (deep) copy of this.
|
static RealMatrix |
MatrixUtils.createColumnRealMatrix(double[] columnData)
Creates a column
RealMatrix using the data from the input
array. |
abstract RealMatrix |
AbstractRealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
RealMatrix |
DiagonalMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
RealMatrix |
RealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
RealMatrix |
Array2DRowRealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
static RealMatrix |
MatrixUtils.createRealDiagonalMatrix(double[] diagonal)
Returns a diagonal matrix with specified elements.
|
static RealMatrix |
MatrixUtils.createRealIdentityMatrix(int dimension)
Returns
dimension x dimension identity matrix. |
static RealMatrix |
MatrixUtils.createRealMatrix(double[][] data)
Returns a
RealMatrix whose entries are the the values in the
the input array. |
static RealMatrix |
MatrixUtils.createRealMatrix(int rows,
int columns)
Returns a
RealMatrix with specified dimensions. |
static RealMatrix |
MatrixUtils.createRowRealMatrix(double[] rowData)
Create a row
RealMatrix using the data from the input
array. |
RealMatrix |
BiDiagonalTransformer.getB()
Returns the bi-diagonal matrix B of the transform.
|
RealMatrix |
AbstractRealMatrix.getColumnMatrix(int column)
Get the entries at the given column index as a column matrix.
|
RealMatrix |
RealMatrix.getColumnMatrix(int column)
Get the entries at the given column index as a column matrix.
|
RealMatrix |
SingularValueDecomposition.getCovariance(double minSingularValue)
Returns the n × n covariance matrix.
|
RealMatrix |
EigenDecomposition.getD()
Gets the block diagonal matrix D of the decomposition.
|
RealMatrix |
HessenbergTransformer.getH()
Returns the Hessenberg matrix H of the transform.
|
RealMatrix |
QRDecomposition.getH()
Returns the Householder reflector vectors.
|
RealMatrix |
EigenDecomposition.Solver.getInverse()
Get the inverse of the decomposed matrix.
|
RealMatrix |
SingularValueDecomposition.Solver.getInverse()
Get the pseudo-inverse of the decomposed matrix.
|
RealMatrix |
LUDecomposition.Solver.getInverse()
Get the inverse of the decomposed matrix.
|
RealMatrix |
RRQRDecomposition.Solver.getInverse()
Get the pseudo-inverse
of the decomposed matrix.
|
RealMatrix |
QRDecomposition.Solver.getInverse()
Get the pseudo-inverse
of the decomposed matrix.
|
RealMatrix |
CholeskyDecomposition.Solver.getInverse()
Get the inverse of the decomposed matrix.
|
RealMatrix |
DecompositionSolver.getInverse()
Get the pseudo-inverse
of the decomposed matrix.
|
RealMatrix |
LUDecomposition.getL()
Returns the matrix L of the decomposition.
|
RealMatrix |
CholeskyDecomposition.getL()
Returns the matrix L of the decomposition.
|
RealMatrix |
CholeskyDecomposition.getLT()
Returns the transpose of the matrix L of the decomposition.
|
RealMatrix |
SchurTransformer.getP()
Returns the matrix P of the transform.
|
RealMatrix |
HessenbergTransformer.getP()
Returns the matrix P of the transform.
|
RealMatrix |
LUDecomposition.getP()
Returns the P rows permutation matrix.
|
RealMatrix |
RRQRDecomposition.getP()
Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
|
RealMatrix |
SchurTransformer.getPT()
Returns the transpose of the matrix P of the transform.
|
RealMatrix |
HessenbergTransformer.getPT()
Returns the transpose of the matrix P of the transform.
|
RealMatrix |
QRDecomposition.getQ()
Returns the matrix Q of the decomposition.
|
RealMatrix |
TriDiagonalTransformer.getQ()
Returns the matrix Q of the transform.
|
RealMatrix |
QRDecomposition.getQT()
Returns the transpose of the matrix Q of the decomposition.
|
RealMatrix |
TriDiagonalTransformer.getQT()
Returns the transpose of the matrix Q of the transform.
|
RealMatrix |
QRDecomposition.getR()
Returns the matrix R of the decomposition.
|
RealMatrix |
RectangularCholeskyDecomposition.getRootMatrix()
Get the root of the covariance matrix.
|
RealMatrix |
AbstractRealMatrix.getRowMatrix(int row)
Get the entries at the given row index as a row matrix.
|
RealMatrix |
RealMatrix.getRowMatrix(int row)
Get the entries at the given row index as a row matrix.
|
RealMatrix |
SingularValueDecomposition.getS()
Returns the diagonal matrix Σ of the decomposition.
|
RealMatrix |
EigenDecomposition.getSquareRoot()
Computes the square-root of the matrix.
|
RealMatrix |
AbstractRealMatrix.getSubMatrix(int[] selectedRows,
int[] selectedColumns)
Gets a submatrix.
|
RealMatrix |
RealMatrix.getSubMatrix(int[] selectedRows,
int[] selectedColumns)
Gets a submatrix.
|
RealMatrix |
AbstractRealMatrix.getSubMatrix(int startRow,
int endRow,
int startColumn,
int endColumn)
Gets a submatrix.
|
RealMatrix |
RealMatrix.getSubMatrix(int startRow,
int endRow,
int startColumn,
int endColumn)
Gets a submatrix.
|
RealMatrix |
SchurTransformer.getT()
Returns the quasi-triangular Schur matrix T of the transform.
|
RealMatrix |
TriDiagonalTransformer.getT()
Returns the tridiagonal matrix T of the transform.
|
RealMatrix |
BiDiagonalTransformer.getU()
Returns the matrix U of the transform.
|
RealMatrix |
SingularValueDecomposition.getU()
Returns the matrix U of the decomposition.
|
RealMatrix |
LUDecomposition.getU()
Returns the matrix U of the decomposition.
|
RealMatrix |
SingularValueDecomposition.getUT()
Returns the transpose of the matrix U of the decomposition.
|
RealMatrix |
EigenDecomposition.getV()
Gets the matrix V of the decomposition.
|
RealMatrix |
BiDiagonalTransformer.getV()
Returns the matrix V of the transform.
|
RealMatrix |
SingularValueDecomposition.getV()
Returns the matrix V of the decomposition.
|
RealMatrix |
EigenDecomposition.getVT()
Gets the transpose of the matrix V of the decomposition.
|
RealMatrix |
SingularValueDecomposition.getVT()
Returns the transpose of the matrix V of the decomposition.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix)
Computes the inverse of the given matrix.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix,
double threshold)
Computes the inverse of the given matrix.
|
RealMatrix |
OpenMapRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
DiagonalMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
RealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
ArrayRealVector.outerProduct(RealVector v)
Compute the outer product.
|
RealMatrix |
RealVector.outerProduct(RealVector v)
Compute the outer product.
|
RealMatrix |
RealMatrixFormat.parse(java.lang.String source)
Parse a string to produce a
RealMatrix object. |
RealMatrix |
RealMatrixFormat.parse(java.lang.String source,
java.text.ParsePosition pos)
Parse a string to produce a
RealMatrix object. |
RealMatrix |
AbstractRealMatrix.power(int p)
Returns the result of multiplying
this with itself p
times. |
RealMatrix |
RealMatrix.power(int p)
Returns the result of multiplying
this with itself p
times. |
RealMatrix |
AbstractRealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
RealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.scalarAdd(double d)
Returns the result of adding
d to each entry of this . |
RealMatrix |
RealMatrix.scalarAdd(double d)
Returns the result of adding
d to each entry of this . |
RealMatrix |
BlockRealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
AbstractRealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
RealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
EigenDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
SingularValueDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B in least square sense.
|
RealMatrix |
LUDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
RRQRDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
QRDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
CholeskyDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
DecompositionSolver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
AbstractRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
RealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
AbstractRealMatrix.transpose()
Returns the transpose of this matrix.
|
RealMatrix |
RealMatrix.transpose()
Returns the transpose of this matrix.
|
Modifier and Type | Method and Description |
---|---|
BlockRealMatrix |
BlockRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
RealMatrix |
AbstractRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
RealMatrix |
RealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
static RealMatrix |
MatrixUtils.blockInverse(RealMatrix m,
int splitIndex)
Computes the inverse of the given matrix by splitting it into
4 sub-matrices.
|
static void |
MatrixUtils.checkSymmetric(RealMatrix matrix,
double eps)
Checks whether a matrix is symmetric.
|
java.lang.String |
RealMatrixFormat.format(RealMatrix m)
This method calls
RealMatrixFormat.format(RealMatrix,StringBuffer,FieldPosition) . |
java.lang.StringBuffer |
RealMatrixFormat.format(RealMatrix matrix,
java.lang.StringBuffer toAppendTo,
java.text.FieldPosition pos)
Formats a
RealMatrix object to produce a string. |
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix)
Computes the inverse of the given matrix.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix,
double threshold)
Computes the inverse of the given matrix.
|
static boolean |
MatrixUtils.isSymmetric(RealMatrix matrix,
double eps)
Checks whether a matrix is symmetric.
|
private static boolean |
MatrixUtils.isSymmetricInternal(RealMatrix matrix,
double relativeTolerance,
boolean raiseException)
Checks whether a matrix is symmetric, within a given relative tolerance.
|
RealMatrix |
OpenMapRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
BlockRealMatrix |
BlockRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
DiagonalMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
RealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
RealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
static void |
MatrixUtils.serializeRealMatrix(RealMatrix matrix,
java.io.ObjectOutputStream oos)
Serialize a
RealMatrix . |
void |
BlockRealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
AbstractRealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
RealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
BlockRealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
void |
AbstractRealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
void |
RealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
RealMatrix |
EigenDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
SingularValueDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B in least square sense.
|
RealMatrix |
LUDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
RRQRDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
QRDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
CholeskyDecomposition.Solver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
DecompositionSolver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
static void |
MatrixUtils.solveLowerTriangularSystem(RealMatrix rm,
RealVector b)
Solve a system of composed of a Lower Triangular Matrix
RealMatrix . |
static void |
MatrixUtils.solveUpperTriangularSystem(RealMatrix rm,
RealVector b)
Solver a system composed of an Upper Triangular Matrix
RealMatrix . |
OpenMapRealMatrix |
OpenMapRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
BlockRealMatrix |
BlockRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
AbstractRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
RealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
private SchurTransformer |
EigenDecomposition.transformToSchur(RealMatrix matrix)
Transforms the matrix to Schur form and calculates the eigenvalues.
|
private void |
EigenDecomposition.transformToTridiagonal(RealMatrix matrix)
Transforms the matrix to tridiagonal form.
|
Constructor and Description |
---|
BiDiagonalTransformer(RealMatrix matrix)
Build the transformation to bi-diagonal shape of a matrix.
|
CholeskyDecomposition(RealMatrix matrix)
Calculates the Cholesky decomposition of the given matrix.
|
CholeskyDecomposition(RealMatrix matrix,
double relativeSymmetryThreshold,
double absolutePositivityThreshold)
Calculates the Cholesky decomposition of the given matrix.
|
EigenDecomposition(RealMatrix matrix)
Calculates the eigen decomposition of the given real matrix.
|
EigenDecomposition(RealMatrix matrix,
double splitTolerance)
Deprecated.
in 3.1 (to be removed in 4.0) due to unused parameter
|
HessenbergTransformer(RealMatrix matrix)
Build the transformation to Hessenberg form of a general matrix.
|
LUDecomposition(RealMatrix matrix)
Calculates the LU-decomposition of the given matrix.
|
LUDecomposition(RealMatrix matrix,
double singularityThreshold)
Calculates the LU-decomposition of the given matrix.
|
QRDecomposition(RealMatrix matrix)
Calculates the QR-decomposition of the given matrix.
|
QRDecomposition(RealMatrix matrix,
double threshold)
Calculates the QR-decomposition of the given matrix.
|
RectangularCholeskyDecomposition(RealMatrix matrix)
Decompose a symmetric positive semidefinite matrix.
|
RectangularCholeskyDecomposition(RealMatrix matrix,
double small)
Decompose a symmetric positive semidefinite matrix.
|
RRQRDecomposition(RealMatrix matrix)
Calculates the QR-decomposition of the given matrix.
|
RRQRDecomposition(RealMatrix matrix,
double threshold)
Calculates the QR-decomposition of the given matrix.
|
SchurTransformer(RealMatrix matrix)
Build the transformation to Schur form of a general real matrix.
|
SingularValueDecomposition(RealMatrix matrix)
Calculates the compact Singular Value Decomposition of the given matrix.
|
Solver(DecompositionSolver upper,
RealMatrix p)
Build a solver from decomposed matrix.
|
Solver(double[] singularValues,
RealMatrix uT,
RealMatrix v,
boolean nonSingular,
double tol)
Build a solver from decomposed matrix.
|
TriDiagonalTransformer(RealMatrix matrix)
Build the transformation to tridiagonal shape of a symmetrical matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
FuzzyKMeansClusterer.getMembershipMatrix()
Returns the
nxk membership matrix, where n is the number
of data points and k the number of clusters. |
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
LeastSquaresConverter.scale
Optional scaling matrix (weight and correlations) for the residuals.
|
Constructor and Description |
---|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
RealMatrix scale)
Builds a simple converter for correlated residuals with the
specified weights.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
CMAESOptimizer.B
Coordinate system.
|
private RealMatrix |
CMAESOptimizer.BD
B*D, stored for efficiency.
|
private RealMatrix |
CMAESOptimizer.C
Covariance matrix.
|
private RealMatrix |
CMAESOptimizer.D
Scaling.
|
private RealMatrix |
CMAESOptimizer.diagC
Diagonal of C, used for diagonalOnly.
|
private RealMatrix |
CMAESOptimizer.diagD
Diagonal of sqrt(D), stored for efficiency.
|
private RealMatrix |
CMAESOptimizer.pc
Evolution path.
|
private RealMatrix |
CMAESOptimizer.ps
Evolution path for sigma.
|
private RealMatrix |
CMAESOptimizer.weights
Array for weighted recombination.
|
private RealMatrix |
CMAESOptimizer.xmean
Objective variables.
|
Modifier and Type | Field and Description |
---|---|
private java.util.List<RealMatrix> |
CMAESOptimizer.statisticsDHistory
History of D matrix.
|
private java.util.List<RealMatrix> |
CMAESOptimizer.statisticsMeanHistory
History of mean matrix.
|
Modifier and Type | Method and Description |
---|---|
private static RealMatrix |
CMAESOptimizer.diag(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.divide(RealMatrix m,
RealMatrix n) |
private static RealMatrix |
CMAESOptimizer.eye(int n,
int m) |
private static RealMatrix |
CMAESOptimizer.log(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.ones(int n,
int m) |
private RealMatrix |
CMAESOptimizer.randn1(int size,
int popSize) |
private static RealMatrix |
CMAESOptimizer.repmat(RealMatrix mat,
int n,
int m) |
private static RealMatrix |
CMAESOptimizer.selectColumns(RealMatrix m,
int[] cols) |
private static RealMatrix |
CMAESOptimizer.sequence(double start,
double end,
double step) |
private static RealMatrix |
CMAESOptimizer.sqrt(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.square(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.sumRows(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.times(RealMatrix m,
RealMatrix n) |
private static RealMatrix |
CMAESOptimizer.triu(RealMatrix m,
int k) |
private static RealMatrix |
CMAESOptimizer.zeros(int n,
int m) |
Modifier and Type | Method and Description |
---|---|
java.util.List<RealMatrix> |
CMAESOptimizer.getStatisticsDHistory() |
java.util.List<RealMatrix> |
CMAESOptimizer.getStatisticsMeanHistory() |
Modifier and Type | Method and Description |
---|---|
private static void |
CMAESOptimizer.copyColumn(RealMatrix m1,
int col1,
RealMatrix m2,
int col2)
Copies a column from m1 to m2.
|
private static RealMatrix |
CMAESOptimizer.diag(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.divide(RealMatrix m,
RealMatrix n) |
private static RealMatrix |
CMAESOptimizer.log(RealMatrix m) |
private static double |
CMAESOptimizer.max(RealMatrix m) |
private static double |
CMAESOptimizer.min(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.repmat(RealMatrix mat,
int n,
int m) |
private static RealMatrix |
CMAESOptimizer.selectColumns(RealMatrix m,
int[] cols) |
private static RealMatrix |
CMAESOptimizer.sqrt(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.square(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.sumRows(RealMatrix m) |
private static RealMatrix |
CMAESOptimizer.times(RealMatrix m,
RealMatrix n) |
private static RealMatrix |
CMAESOptimizer.triu(RealMatrix m,
int k) |
private void |
CMAESOptimizer.updateCovariance(boolean hsig,
RealMatrix bestArx,
RealMatrix arz,
int[] arindex,
RealMatrix xold)
Update of the covariance matrix C.
|
private void |
CMAESOptimizer.updateCovarianceDiagonalOnly(boolean hsig,
RealMatrix bestArz)
Update of the covariance matrix C for diagonalOnly > 0
|
private boolean |
CMAESOptimizer.updateEvolutionPaths(RealMatrix zmean,
RealMatrix xold)
Update of the evolution paths ps and pc.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
MultivariateVectorOptimizer.weightMatrix
Deprecated.
Weight matrix.
|
private RealMatrix |
Weight.weightMatrix
Deprecated.
Weight matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
MultivariateVectorOptimizer.getWeight()
Deprecated.
Gets the weight matrix of the observations.
|
RealMatrix |
Weight.getWeight()
Deprecated.
Gets the initial guess.
|
Constructor and Description |
---|
Weight(RealMatrix weight)
Deprecated.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
AbstractLeastSquaresOptimizer.weightMatrixSqrt
Deprecated.
Square-root of the weight matrix.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
AbstractLeastSquaresOptimizer.computeWeightedJacobian(double[] params)
Deprecated.
Computes the weighted Jacobian matrix.
|
RealMatrix |
AbstractLeastSquaresOptimizer.getWeightSquareRoot()
Deprecated.
Gets the square-root of the weight matrix.
|
private RealMatrix |
AbstractLeastSquaresOptimizer.squareRoot(RealMatrix m)
Deprecated.
Computes the square-root of the weight matrix.
|
Modifier and Type | Method and Description |
---|---|
private void |
LevenbergMarquardtOptimizer.qrDecomposition(RealMatrix jacobian)
Deprecated.
Decompose a matrix A as A.P = Q.R using Householder transforms.
|
private RealMatrix |
AbstractLeastSquaresOptimizer.squareRoot(RealMatrix m)
Deprecated.
Computes the square-root of the weight matrix.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
LeastSquaresConverter.scale
Deprecated.
Optional scaling matrix (weight and correlations) for the residuals.
|
private RealMatrix |
Weight.weightMatrix
Deprecated.
Weight matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
Weight.getWeight()
Deprecated.
Gets the initial guess.
|
Constructor and Description |
---|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
RealMatrix scale)
Deprecated.
Build a simple converter for correlated residuals with the specific weights.
|
Weight(RealMatrix weight)
Deprecated.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
CMAESOptimizer.B
Deprecated.
Coordinate system.
|
private RealMatrix |
CMAESOptimizer.BD
Deprecated.
B*D, stored for efficiency.
|
private RealMatrix |
CMAESOptimizer.C
Deprecated.
Covariance matrix.
|
private RealMatrix |
CMAESOptimizer.D
Deprecated.
Scaling.
|
private RealMatrix |
CMAESOptimizer.diagC
Deprecated.
Diagonal of C, used for diagonalOnly.
|
private RealMatrix |
CMAESOptimizer.diagD
Deprecated.
Diagonal of sqrt(D), stored for efficiency.
|
private RealMatrix |
CMAESOptimizer.pc
Deprecated.
Evolution path.
|
private RealMatrix |
CMAESOptimizer.ps
Deprecated.
Evolution path for sigma.
|
private RealMatrix |
BaseAbstractMultivariateVectorOptimizer.weightMatrix
Deprecated.
Weight matrix.
|
private RealMatrix |
CMAESOptimizer.weights
Deprecated.
Array for weighted recombination.
|
private RealMatrix |
CMAESOptimizer.xmean
Deprecated.
Objective variables.
|
Modifier and Type | Field and Description |
---|---|
private java.util.List<RealMatrix> |
CMAESOptimizer.statisticsDHistory
Deprecated.
History of D matrix.
|
private java.util.List<RealMatrix> |
CMAESOptimizer.statisticsMeanHistory
Deprecated.
History of mean matrix.
|
Modifier and Type | Method and Description |
---|---|
private static RealMatrix |
CMAESOptimizer.diag(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.divide(RealMatrix m,
RealMatrix n)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.eye(int n,
int m)
Deprecated.
|
RealMatrix |
BaseAbstractMultivariateVectorOptimizer.getWeight()
Deprecated.
Gets the weight matrix of the observations.
|
private static RealMatrix |
CMAESOptimizer.log(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.ones(int n,
int m)
Deprecated.
|
private RealMatrix |
CMAESOptimizer.randn1(int size,
int popSize)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.repmat(RealMatrix mat,
int n,
int m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.selectColumns(RealMatrix m,
int[] cols)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.sequence(double start,
double end,
double step)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.sqrt(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.square(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.sumRows(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.times(RealMatrix m,
RealMatrix n)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.triu(RealMatrix m,
int k)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.zeros(int n,
int m)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<RealMatrix> |
CMAESOptimizer.getStatisticsDHistory()
Deprecated.
|
java.util.List<RealMatrix> |
CMAESOptimizer.getStatisticsMeanHistory()
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
private static void |
CMAESOptimizer.copyColumn(RealMatrix m1,
int col1,
RealMatrix m2,
int col2)
Deprecated.
Copies a column from m1 to m2.
|
private static RealMatrix |
CMAESOptimizer.diag(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.divide(RealMatrix m,
RealMatrix n)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.log(RealMatrix m)
Deprecated.
|
private static double |
CMAESOptimizer.max(RealMatrix m)
Deprecated.
|
private static double |
CMAESOptimizer.min(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.repmat(RealMatrix mat,
int n,
int m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.selectColumns(RealMatrix m,
int[] cols)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.sqrt(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.square(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.sumRows(RealMatrix m)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.times(RealMatrix m,
RealMatrix n)
Deprecated.
|
private static RealMatrix |
CMAESOptimizer.triu(RealMatrix m,
int k)
Deprecated.
|
private void |
CMAESOptimizer.updateCovariance(boolean hsig,
RealMatrix bestArx,
RealMatrix arz,
int[] arindex,
RealMatrix xold)
Deprecated.
Update of the covariance matrix C.
|
private void |
CMAESOptimizer.updateCovarianceDiagonalOnly(boolean hsig,
RealMatrix bestArz)
Deprecated.
Update of the covariance matrix C for diagonalOnly > 0
|
private boolean |
CMAESOptimizer.updateEvolutionPaths(RealMatrix zmean,
RealMatrix xold)
Deprecated.
Update of the evolution paths ps and pc.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
AbstractLeastSquaresOptimizer.weightMatrixSqrt
Deprecated.
Square-root of the weight matrix.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
AbstractLeastSquaresOptimizer.computeWeightedJacobian(double[] params)
Deprecated.
Computes the Jacobian matrix.
|
RealMatrix |
AbstractLeastSquaresOptimizer.getWeightSquareRoot()
Deprecated.
Gets the square-root of the weight matrix.
|
private RealMatrix |
AbstractLeastSquaresOptimizer.squareRoot(RealMatrix m)
Deprecated.
Computes the square-root of the weight matrix.
|
Modifier and Type | Method and Description |
---|---|
private void |
LevenbergMarquardtOptimizer.qrDecomposition(RealMatrix jacobian)
Deprecated.
Decompose a matrix A as A.P = Q.R using Householder transforms.
|
private RealMatrix |
AbstractLeastSquaresOptimizer.squareRoot(RealMatrix m)
Deprecated.
Computes the square-root of the weight matrix.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
SimplexTableau.tableau
Deprecated.
Simple tableau.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
SimplexTableau.createTableau(boolean maximize)
Deprecated.
Create the tableau by itself.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
CorrelatedRandomVectorGenerator.root
Root of the covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
CorrelatedRandomVectorGenerator.getRootMatrix()
Get the root of the covariance matrix.
|
Constructor and Description |
---|
CorrelatedRandomVectorGenerator(double[] mean,
RealMatrix covariance,
double small,
NormalizedRandomGenerator generator)
Builds a correlated random vector generator from its mean
vector and covariance matrix.
|
CorrelatedRandomVectorGenerator(RealMatrix covariance,
double small,
NormalizedRandomGenerator generator)
Builds a null mean random correlated vector generator from its
covariance matrix.
|
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
KendallsCorrelation.correlationMatrix
correlation matrix
|
private RealMatrix |
PearsonsCorrelation.correlationMatrix
correlation matrix
|
private RealMatrix |
Covariance.covarianceMatrix
covariance matrix
|
private RealMatrix |
SpearmansCorrelation.data
Input data
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(double[][] matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input rectangular array.
|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(double[][] matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input rectangular array.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(double[][] data)
Computes the correlation matrix for the columns of the
input rectangular array.
|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input matrix.
|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input matrix.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the correlation matrix for the columns of the
input matrix, using
PearsonsCorrelation.correlation(double[], double[]) . |
protected RealMatrix |
Covariance.computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(double[][] data,
boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent
covariates.
|
RealMatrix |
PearsonsCorrelation.covarianceToCorrelation(RealMatrix covarianceMatrix)
Derives a correlation matrix from a covariance matrix.
|
RealMatrix |
KendallsCorrelation.getCorrelationMatrix()
Returns the correlation matrix.
|
RealMatrix |
SpearmansCorrelation.getCorrelationMatrix()
Calculate the Spearman Rank Correlation Matrix.
|
RealMatrix |
PearsonsCorrelation.getCorrelationMatrix()
Returns the correlation matrix.
|
RealMatrix |
PearsonsCorrelation.getCorrelationPValues()
Returns a matrix of p-values associated with the (two-sided) null
hypothesis that the corresponding correlation coefficient is zero.
|
RealMatrix |
PearsonsCorrelation.getCorrelationStandardErrors()
Returns a matrix of standard errors associated with the estimates
in the correlation matrix.
getCorrelationStandardErrors().getEntry(i,j) is the standard
error associated with getCorrelationMatrix.getEntry(i,j) |
RealMatrix |
StorelessCovariance.getCovarianceMatrix()
Returns the covariance matrix
|
RealMatrix |
Covariance.getCovarianceMatrix()
Returns the covariance matrix
|
private RealMatrix |
SpearmansCorrelation.rankTransform(RealMatrix matrix)
Applies rank transform to each of the columns of
matrix
using the current rankingAlgorithm . |
Modifier and Type | Method and Description |
---|---|
private void |
Covariance.checkSufficientData(RealMatrix matrix)
Throws MathIllegalArgumentException if the matrix does not have at least
one column and two rows.
|
private void |
PearsonsCorrelation.checkSufficientData(RealMatrix matrix)
Throws MathIllegalArgumentException if the matrix does not have at least
two columns and two rows.
|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input matrix.
|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input matrix.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the correlation matrix for the columns of the
input matrix, using
PearsonsCorrelation.correlation(double[], double[]) . |
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent
covariates.
|
RealMatrix |
PearsonsCorrelation.covarianceToCorrelation(RealMatrix covarianceMatrix)
Derives a correlation matrix from a covariance matrix.
|
private RealMatrix |
SpearmansCorrelation.rankTransform(RealMatrix matrix)
Applies rank transform to each of the columns of
matrix
using the current rankingAlgorithm . |
Constructor and Description |
---|
Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Covariance(RealMatrix matrix,
boolean biasCorrected)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
KendallsCorrelation(RealMatrix matrix)
Create a KendallsCorrelation from a RealMatrix whose columns
represent variables to be correlated.
|
PearsonsCorrelation(RealMatrix matrix)
Create a PearsonsCorrelation from a RealMatrix whose columns
represent variables to be correlated.
|
PearsonsCorrelation(RealMatrix covarianceMatrix,
int numberOfObservations)
Create a PearsonsCorrelation from a covariance matrix.
|
SpearmansCorrelation(RealMatrix dataMatrix)
Create a SpearmansCorrelation from the given data matrix.
|
SpearmansCorrelation(RealMatrix dataMatrix,
RankingAlgorithm rankingAlgorithm)
Create a SpearmansCorrelation with the given input data matrix
and ranking algorithm.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
StatisticalMultivariateSummary.getCovariance()
Returns the covariance of the available values.
|
RealMatrix |
SynchronizedMultivariateSummaryStatistics.getCovariance()
Returns the covariance matrix of the values that have been added.
|
RealMatrix |
MultivariateSummaryStatistics.getCovariance()
Returns the covariance matrix of the values that have been added.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
VectorialCovariance.getResult()
Get the covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
private RealMatrix |
KolmogorovSmirnovTest.createRoundedH(double d,
int n)
Creates
H of size m x m as described in [1] (see above)
using double-precision. |
Modifier and Type | Field and Description |
---|---|
private RealMatrix |
GLSMultipleLinearRegression.Omega
Covariance matrix.
|
private RealMatrix |
GLSMultipleLinearRegression.OmegaInverse
Inverse of covariance matrix.
|
private RealMatrix |
AbstractMultipleLinearRegression.xMatrix
X sample data.
|
Modifier and Type | Method and Description |
---|---|
protected abstract RealMatrix |
AbstractMultipleLinearRegression.calculateBetaVariance()
Calculates the beta variance of multiple linear regression in matrix
notation.
|
protected RealMatrix |
GLSMultipleLinearRegression.calculateBetaVariance()
Calculates the variance on the beta.
|
protected RealMatrix |
OLSMultipleLinearRegression.calculateBetaVariance()
Calculates the variance-covariance matrix of the regression parameters.
|
RealMatrix |
OLSMultipleLinearRegression.calculateHat()
Compute the "hat" matrix.
|
protected RealMatrix |
GLSMultipleLinearRegression.getOmegaInverse()
Get the inverse of the covariance.
|
protected RealMatrix |
AbstractMultipleLinearRegression.getX() |