Package | Description |
---|---|
org.apache.commons.math3.linear |
Linear algebra support.
|
org.apache.commons.math3.ode |
This package provides classes to solve Ordinary Differential Equations problems.
|
org.apache.commons.math3.ode.nonstiff |
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
|
org.apache.commons.math3.ode.sampling |
This package provides classes to handle sampling steps during
Ordinary Differential Equations integration.
|
org.apache.commons.math3.optim.linear |
Optimization algorithms for linear constrained problems.
|
org.apache.commons.math3.optim.nonlinear.scalar.noderiv |
This package provides optimization algorithms that do not require derivatives.
|
org.apache.commons.math3.optimization.direct |
This package provides optimization algorithms that don't require derivatives.
|
Modifier and Type | Method and Description |
---|---|
Array2DRowRealMatrix |
Array2DRowRealMatrix.add(Array2DRowRealMatrix m)
Compute the sum of
this and m . |
static Array2DRowRealMatrix |
MatrixUtils.bigFractionMatrixToRealMatrix(FieldMatrix<BigFraction> m)
|
static Array2DRowRealMatrix |
MatrixUtils.fractionMatrixToRealMatrix(FieldMatrix<Fraction> m)
|
(package private) Array2DRowRealMatrix |
MatrixUtils.FractionMatrixConverter.getConvertedMatrix()
Get the converted matrix.
|
(package private) Array2DRowRealMatrix |
MatrixUtils.BigFractionMatrixConverter.getConvertedMatrix()
Get the converted matrix.
|
Array2DRowRealMatrix |
Array2DRowRealMatrix.multiply(Array2DRowRealMatrix m)
Returns the result of postmultiplying
this by m . |
Array2DRowRealMatrix |
Array2DRowRealMatrix.subtract(Array2DRowRealMatrix m)
Returns
this minus m . |
Modifier and Type | Method and Description |
---|---|
Array2DRowRealMatrix |
Array2DRowRealMatrix.add(Array2DRowRealMatrix m)
Compute the sum of
this and m . |
Array2DRowRealMatrix |
Array2DRowRealMatrix.multiply(Array2DRowRealMatrix m)
Returns the result of postmultiplying
this by m . |
Array2DRowRealMatrix |
Array2DRowRealMatrix.subtract(Array2DRowRealMatrix m)
Returns
this minus m . |
Modifier and Type | Field and Description |
---|---|
protected Array2DRowRealMatrix |
MultistepIntegrator.nordsieck
Nordsieck matrix of the higher scaled derivatives.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Array2DRowRealMatrix |
MultistepIntegrator.initializeHighOrderDerivatives(double h,
double[] t,
double[][] y,
double[][] yDot)
Initialize the high order scaled derivatives at step start.
|
Array2DRowRealMatrix |
MultistepIntegrator.NordsieckTransformer.initializeHighOrderDerivatives(double h,
double[] t,
double[][] y,
double[][] yDot)
Initialize the high order scaled derivatives at step start.
|
Modifier and Type | Field and Description |
---|---|
private Array2DRowRealMatrix |
AdamsNordsieckTransformer.update
Update matrix for the higher order derivatives h2/2y'', h3/6 y''' ...
|
Modifier and Type | Method and Description |
---|---|
Array2DRowRealMatrix |
AdamsNordsieckTransformer.initializeHighOrderDerivatives(double h,
double[] t,
double[][] y,
double[][] yDot)
Initialize the high order scaled derivatives at step start.
|
protected Array2DRowRealMatrix |
AdamsIntegrator.initializeHighOrderDerivatives(double h,
double[] t,
double[][] y,
double[][] yDot)
Initialize the high order scaled derivatives at step start.
|
Array2DRowRealMatrix |
AdamsNordsieckTransformer.updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).
|
Array2DRowRealMatrix |
AdamsIntegrator.updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).
|
Modifier and Type | Method and Description |
---|---|
Array2DRowRealMatrix |
AdamsNordsieckTransformer.updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).
|
Array2DRowRealMatrix |
AdamsIntegrator.updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).
|
void |
AdamsNordsieckTransformer.updateHighOrderDerivativesPhase2(double[] start,
double[] end,
Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).
|
void |
AdamsIntegrator.updateHighOrderDerivativesPhase2(double[] start,
double[] end,
Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).
|
Modifier and Type | Field and Description |
---|---|
private Array2DRowRealMatrix |
NordsieckStepInterpolator.nordsieck
Nordsieck vector.
|
Modifier and Type | Method and Description |
---|---|
void |
NordsieckStepInterpolator.reinitialize(double time,
double stepSize,
double[] scaledDerivative,
Array2DRowRealMatrix nordsieckVector)
Reinitialize the instance.
|
Modifier and Type | Field and Description |
---|---|
private Array2DRowRealMatrix |
SimplexTableau.tableau
Simple tableau.
|
Modifier and Type | Method and Description |
---|---|
protected Array2DRowRealMatrix |
SimplexTableau.createTableau(boolean maximize)
Create the tableau by itself.
|
Modifier and Type | Field and Description |
---|---|
private Array2DRowRealMatrix |
BOBYQAOptimizer.bMatrix
Last n columns of matrix H (where n is the dimension
of the problem).
|
private Array2DRowRealMatrix |
BOBYQAOptimizer.interpolationPoints
Coordinates of the interpolation points relative to
BOBYQAOptimizer.originShift . |
private Array2DRowRealMatrix |
BOBYQAOptimizer.zMatrix
Factorization of the leading npt square submatrix of H, this
factorization being Z ZT, which provides both the correct
rank and positive semi-definiteness.
|
Modifier and Type | Field and Description |
---|---|
private Array2DRowRealMatrix |
BOBYQAOptimizer.bMatrix
Deprecated.
Last n columns of matrix H (where n is the dimension
of the problem).
|
private Array2DRowRealMatrix |
BOBYQAOptimizer.interpolationPoints
Deprecated.
Coordinates of the interpolation points relative to
BOBYQAOptimizer.originShift . |
private Array2DRowRealMatrix |
BOBYQAOptimizer.zMatrix
Deprecated.
Factorization of the leading npt square submatrix of H, this
factorization being Z ZT, which provides both the correct
rank and positive semi-definiteness.
|