$treeview $search $mathjax
Eigen  3.2.5
$projectbrief
$projectbrief
$searchbox

SparseMatrix< _Scalar, _Options, _Index > Class Template Reference
[SparseCore module]

A versatible sparse matrix representation. More...

Inheritance diagram for SparseMatrix< _Scalar, _Options, _Index >:

List of all members.

Public Member Functions

const CwiseBinaryOp
< CustomBinaryOp, const
SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomLeftCorner () const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomLeftCorner ()
const Block< const
SparseMatrix< _Scalar,
_Options, _Index > > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index > > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomRightCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomRightCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomRightCorner () const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
bottomRightCorner ()
const Block< const
SparseMatrix< _Scalar,
_Options, _Index > > 
bottomRightCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index > > 
bottomRightCorner (Index cRows, Index cCols)
ConstNRowsBlockXpr< N >::Type bottomRows (Index n=N) const
NRowsBlockXpr< N >::Type bottomRows (Index n=N)
ConstRowsBlockXpr bottomRows (Index n) const
RowsBlockXpr bottomRows (Index n)
internal::cast_return_type
< SparseMatrix< _Scalar,
_Options, _Index >, const
CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar,
NewType >, const SparseMatrix
< _Scalar, _Options, _Index >
> >::type 
cast () const
Scalar coeff (Index row, Index col) const
Scalar & coeffRef (Index row, Index col)
ConstColXpr col (Index i) const
ColXpr col (Index i)
Index cols () const
ConjugateReturnType conjugate () const
void conservativeResize (Index rows, Index cols)
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseAbs2 () const
const CwiseScalarEqualReturnType cwiseEqual (const Scalar &s) const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_product_op
< typename SparseMatrix
< _Scalar, _Options, _Index >
::Scalar, typename
OtherDerived::Scalar >, const
SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
cwiseProduct (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseSqrt () const
const SparseMatrix< _Scalar,
_Options, _Index > & 
derived () const
SparseMatrix< _Scalar,
_Options, _Index > & 
derived ()
const Diagonal< const
SparseMatrix
diagonal () const
const internal::eval
< SparseMatrix< _Scalar,
_Options, _Index > >::type 
eval () const
ConstFixedSegmentReturnType< N >
::Type 
head (Index n=N) const
FixedSegmentReturnType< N >::Type head (Index n=N)
ConstSegmentReturnType head (Index n) const
SegmentReturnType head (Index n)
NonConstImagReturnType imag ()
const ImagReturnType imag () const
Index * innerIndexPtr ()
const Index * innerIndexPtr () const
Index * innerNonZeroPtr ()
const Index * innerNonZeroPtr () const
Index innerSize () const
Scalar & insert (Index row, Index col)
bool isCompressed () const
bool isVector () const
ConstNColsBlockXpr< N >::Type leftCols (Index n=N) const
NColsBlockXpr< N >::Type leftCols (Index n=N)
ConstColsBlockXpr leftCols (Index n) const
ColsBlockXpr leftCols (Index n)
void makeCompressed ()
ConstNColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N) const
NColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N)
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
ColsBlockXpr middleCols (Index startCol, Index numCols)
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N) const
NRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N)
ConstRowsBlockXpr middleRows (Index startRow, Index n) const
RowsBlockXpr middleRows (Index startRow, Index n)
Index nonZeros () const
const
SparseDenseProductReturnType
< SparseMatrix< _Scalar,
_Options, _Index >
, OtherDerived >::Type 
operator* (const MatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const SparseMatrix
< _Scalar, _Options, _Index > > 
operator* (const std::complex< Scalar > &scalar) const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseBinaryOp
< internal::scalar_sum_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
operator+ (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_difference_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
operator- (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index > > 
operator- () const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index > > 
operator/ (const Scalar &scalar) const
Index * outerIndexPtr ()
const Index * outerIndexPtr () const
Index outerSize () const
template<typename KeepFunc >
void prune (const KeepFunc &keep=KeepFunc())
void prune (const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision())
NonConstRealReturnType real ()
RealReturnType real () const
template<class SizesType >
void reserve (const SizesType &reserveSizes)
void reserve (Index reserveSize)
void resize (Index rows, Index cols)
ConstNColsBlockXpr< N >::Type rightCols (Index n=N) const
NColsBlockXpr< N >::Type rightCols (Index n=N)
ConstColsBlockXpr rightCols (Index n) const
ColsBlockXpr rightCols (Index n)
ConstRowXpr row (Index i) const
RowXpr row (Index i)
Index rows () const
ConstFixedSegmentReturnType< N >
::Type 
segment (Index start, Index n=N) const
FixedSegmentReturnType< N >::Type segment (Index start, Index n=N)
ConstSegmentReturnType segment (Index start, Index n) const
SegmentReturnType segment (Index start, Index n)
template<typename InputIterators >
void setFromTriplets (const InputIterators &begin, const InputIterators &end)
void setIdentity ()
void setZero ()
Index size () const
template<typename OtherDerived >
 SparseMatrix (const ReturnByValue< OtherDerived > &other)
 Copy constructor with in-place evaluation.
 SparseMatrix (const SparseMatrix &other)
template<typename OtherDerived , unsigned int UpLo>
 SparseMatrix (const SparseSelfAdjointView< OtherDerived, UpLo > &other)
template<typename OtherDerived >
 SparseMatrix (const SparseMatrixBase< OtherDerived > &other)
 SparseMatrix (Index rows, Index cols)
 SparseMatrix ()
void swap (SparseMatrix &other)
ConstFixedSegmentReturnType< N >
::Type 
tail (Index n=N) const
FixedSegmentReturnType< N >::Type tail (Index n=N)
ConstSegmentReturnType tail (Index n) const
SegmentReturnType tail (Index n)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topLeftCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topLeftCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topLeftCorner () const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topLeftCorner ()
const Block< const
SparseMatrix< _Scalar,
_Options, _Index > > 
topLeftCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index > > 
topLeftCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topRightCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topRightCorner (Index cRows, Index cCols)
const Block< const
SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topRightCorner () const
Block< SparseMatrix< _Scalar,
_Options, _Index >, CRows,
CCols > 
topRightCorner ()
const Block< const
SparseMatrix< _Scalar,
_Options, _Index > > 
topRightCorner (Index cRows, Index cCols) const
Block< SparseMatrix< _Scalar,
_Options, _Index > > 
topRightCorner (Index cRows, Index cCols)
ConstNRowsBlockXpr< N >::Type topRows (Index n=N) const
NRowsBlockXpr< N >::Type topRows (Index n=N)
ConstRowsBlockXpr topRows (Index n) const
RowsBlockXpr topRows (Index n)
SparseSymmetricPermutationProduct
< SparseMatrix< _Scalar,
_Options, _Index >, Upper|Lower > 
twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
const CwiseUnaryOp
< CustomUnaryOp, const
SparseMatrix< _Scalar,
_Options, _Index > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
SparseMatrix< _Scalar,
_Options, _Index > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
void uncompress ()
Scalar * valuePtr ()
const Scalar * valuePtr () const
 ~SparseMatrix ()

Friends

const
DenseSparseProductReturnType
< OtherDerived, SparseMatrix
< _Scalar, _Options, _Index >
>::Type 
operator* (const MatrixBase< OtherDerived > &lhs, const SparseMatrix< _Scalar, _Options, _Index > &rhs)

Detailed Description

template<typename _Scalar, int _Options, typename _Index>
class Eigen::SparseMatrix< _Scalar, _Options, _Index >

A versatible sparse matrix representation.

This class implements a more versatile variants of the common compressed row/column storage format. Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. All the non zeros are stored in a single large buffer. Unlike the compressed format, there might be extra space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero can be done with limited memory reallocation and copies.

A call to the function makeCompressed() turns the matrix into the standard compressed format compatible with many library.

More details on this storage sceheme are given in the manual pages.

Template Parameters:
_Scalar the scalar type, i.e. the type of the coefficients
_Options Union of bit flags controlling the storage scheme. Currently the only possibility is ColMajor or RowMajor. The default is 0 which means column-major.
_Index the type of the indices. It has to be a signed type (e.g., short, int, std::ptrdiff_t). Default is int.

This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_SPARSEMATRIX_PLUGIN.


Constructor & Destructor Documentation

SparseMatrix (  )  [inline]

Default constructor yielding an empty 0 x 0 matrix

SparseMatrix ( Index  rows,
Index  cols 
) [inline]

Constructs a rows x cols empty matrix

SparseMatrix ( const SparseMatrixBase< OtherDerived > &  other  )  [inline]

Constructs a sparse matrix from the sparse expression other

SparseMatrix ( const SparseSelfAdjointView< OtherDerived, UpLo > &  other  )  [inline]

Constructs a sparse matrix from the sparse selfadjoint view other

SparseMatrix ( const SparseMatrix< _Scalar, _Options, _Index > &  other  )  [inline]

Copy constructor (it performs a deep copy)

~SparseMatrix (  )  [inline]

Destructor


Member Function Documentation

const CwiseBinaryOp<CustomBinaryOp, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const [inline, inherited]
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
  EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
  typedef complex<Scalar> result_type;
  complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
  cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
  return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
const Block<const SparseMatrix< _Scalar, _Options, _Index > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const [inline, inherited]

This is the const version of block<>(Index, Index, Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) [inline, inherited]
Returns:
an expression of a block in *this.
Template Parameters:
BlockRows number of rows in block as specified at compile-time
BlockCols number of columns in block as specified at compile-time
Parameters:
startRow the first row in the block
startCol the first column in the block
blockRows number of rows in block as specified at run-time
blockCols number of columns in block as specified at run-time

This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal BlockRows unless BlockRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) const [inline, inherited]

This is the const version of block<>(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) [inline, inherited]
Returns:
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters:
startRow the first row in the block
startCol the first column in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
 m.template block<3,3>(1,1); 
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const [inline, inherited]

This is the const version of block(Index,Index,Index,Index).

Block<SparseMatrix< _Scalar, _Options, _Index > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a block in *this.
Parameters:
startRow the first row in the block
startCol the first column in the block
blockRows the number of rows in the block
blockCols the number of columns in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomLeftCorner<int, int>(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a bottom-left corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl;
m.bottomLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,Dynamic>(2,2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomLeftCorner (  )  const [inline, inherited]

This is the const version of bottomLeftCorner<int, int>().

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomLeftCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomLeftCorner(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-left corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomRightCorner<int, int>(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a bottom-right corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,Dynamic>(2,2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomRightCorner (  )  const [inline, inherited]

This is the const version of bottomRightCorner<int, int>().

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> bottomRightCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > > bottomRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomRightCorner(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > > bottomRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-right corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type bottomRows ( Index  n = N  )  const [inline, inherited]

This is the const version of bottomRows<int>().

NRowsBlockXpr<N>::Type bottomRows ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr bottomRows ( Index  n  )  const [inline, inherited]

This is the const version of bottomRows(Index).

RowsBlockXpr bottomRows ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Parameters:
n the number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
internal::cast_return_type<SparseMatrix< _Scalar, _Options, _Index > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar, NewType>, const SparseMatrix< _Scalar, _Options, _Index > > >::type cast (  )  const [inline, inherited]
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp
Scalar coeff ( Index  row,
Index  col 
) const [inline]
Returns:
the value of the matrix at position i, j This function returns Scalar(0) if the element is an explicit zero
Scalar& coeffRef ( Index  row,
Index  col 
) [inline]
Returns:
a non-const reference to the value of the matrix at position i, j

If the element does not exist then it is inserted via the insert(Index,Index) function which itself turns the matrix into a non compressed form if that was not the case.

This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) function if the element does not already exist.

ConstColXpr col ( Index  i  )  const [inline, inherited]

This is the const version of col().

ColXpr col ( Index  i  )  [inline, inherited]
Returns:
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See also:
row(), class Block
ConjugateReturnType conjugate (  )  const [inline, inherited]
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()
void conservativeResize ( Index  rows,
Index  cols 
) [inline]

Resizes the matrix to a rows x cols matrix leaving old values untouched.

See also:
resizeNonZeros(Index), reserve(), setZero()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseAbs (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also:
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseAbs2 (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also:
cwiseAbs()
const CwiseScalarEqualReturnType cwiseEqual ( const Scalar &  s  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseBinaryOp<std::equal_to<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseInverse (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,   
     3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

  0.5     2     1
0.333     4     1
See also:
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const ConstantReturnType> cwiseMax ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const ConstantReturnType> cwiseMin ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also:
class CwiseBinaryOp, max()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_product_op<typename SparseMatrix< _Scalar, _Options, _Index > ::Scalar, typename OtherDerived ::Scalar >, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived > cwiseProduct ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also:
class CwiseBinaryOp, cwiseAbs2
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

 0.5
 1.5
1.33
See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseSqrt (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

   1
1.41
   2
See also:
cwisePow(), cwiseSquare()
const SparseMatrix< _Scalar, _Options, _Index > & derived (  )  const [inline, inherited]
Returns:
a const reference to the derived object
SparseMatrix< _Scalar, _Options, _Index > & derived (  )  [inline, inherited]
Returns:
a reference to the derived object
const Diagonal<const SparseMatrix> diagonal (  )  const [inline]
Returns:
a const expression of the diagonal coefficients
const internal::eval<SparseMatrix< _Scalar, _Options, _Index > >::type eval (  )  const [inline, inherited]
Returns:
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

ConstFixedSegmentReturnType<N>::Type head ( Index  n = N  )  const [inline, inherited]

This is the const version of head<int>().

FixedSegmentReturnType<N>::Type head ( Index  n = N  )  [inline, inherited]
Returns:
a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
n the number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
See also:
class Block
ConstSegmentReturnType head ( Index  n  )  const [inline, inherited]

This is the const version of head(Index).

SegmentReturnType head ( Index  n  )  [inline, inherited]
Returns:
a dynamic-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
NonConstImagReturnType imag (  )  [inline, inherited]
Returns:
a non const expression of the imaginary part of *this.
See also:
real()
const ImagReturnType imag (  )  const [inline, inherited]
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()
Index* innerIndexPtr (  )  [inline]
Returns:
a non-const pointer to the array of inner indices. This function is aimed at interoperability with other libraries.
See also:
valuePtr(), outerIndexPtr()
const Index* innerIndexPtr (  )  const [inline]
Returns:
a const pointer to the array of inner indices. This function is aimed at interoperability with other libraries.
See also:
valuePtr(), outerIndexPtr()
Index* innerNonZeroPtr (  )  [inline]
Returns:
a non-const pointer to the array of the number of non zeros of the inner vectors. This function is aimed at interoperability with other libraries.
Warning:
it returns the null pointer 0 in compressed mode
const Index* innerNonZeroPtr (  )  const [inline]
Returns:
a const pointer to the array of the number of non zeros of the inner vectors. This function is aimed at interoperability with other libraries.
Warning:
it returns the null pointer 0 in compressed mode

Referenced by SparseLU< _MatrixType, _OrderingType >::analyzePattern(), SparseQR< _MatrixType, _OrderingType >::factorize(), and SparseLU< _MatrixType, _OrderingType >::factorize().

Index innerSize (  )  const [inline]
Returns:
the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major)

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Scalar& insert ( Index  row,
Index  col 
) [inline]
Returns:
a reference to a novel non zero coefficient with coordinates row x col. The non zero coefficient must not already exist.

If the matrix *this is in compressed mode, then *this is turned into uncompressed mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first call reserve(const SizesType &) to reserve a more appropriate number of elements per inner vector that better match your scenario.

This function performs a sorted insertion in O(1) if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.

Referenced by SparseMatrix< Scalar, RowMajor >::coeffRef().

bool isCompressed (  )  const [inline]
bool isVector (  )  const [inline, inherited]
Returns:
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
 rows()==1 || cols()==1 
See also:
rows(), cols(), IsVectorAtCompileTime.
ConstNColsBlockXpr<N>::Type leftCols ( Index  n = N  )  const [inline, inherited]

This is the const version of leftCols<int>().

NColsBlockXpr<N>::Type leftCols ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr leftCols ( Index  n  )  const [inline, inherited]

This is the const version of leftCols(Index).

ColsBlockXpr leftCols ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Parameters:
n the number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
void makeCompressed (  )  [inline]

Turns the matrix into the compressed format.

Referenced by SparseQR< _MatrixType, _OrderingType >::factorize(), and SparseMatrix< Scalar, RowMajor >::prune().

ConstNColsBlockXpr<N>::Type middleCols ( Index  startCol,
Index  n = N 
) const [inline, inherited]

This is the const version of middleCols<int>().

NColsBlockXpr<N>::Type middleCols ( Index  startCol,
Index  n = N 
) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
startCol the index of the first column in the block
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) const [inline, inherited]

This is the const version of middleCols(Index,Index).

ColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Parameters:
startCol the index of the first column in the block
numCols the number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type middleRows ( Index  startRow,
Index  n = N 
) const [inline, inherited]

This is the const version of middleRows<int>().

NRowsBlockXpr<N>::Type middleRows ( Index  startRow,
Index  n = N 
) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
startRow the index of the first row in the block
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr middleRows ( Index  startRow,
Index  n 
) const [inline, inherited]

This is the const version of middleRows(Index,Index).

RowsBlockXpr middleRows ( Index  startRow,
Index  n 
) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Parameters:
startRow the index of the first row in the block
n the number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
Index nonZeros (  )  const [inline]
Returns:
the number of non zero coefficients

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by SparseLU< _MatrixType, _OrderingType >::factorize().

const SparseDenseProductReturnType<SparseMatrix< _Scalar, _Options, _Index > ,OtherDerived>::Type operator* ( const MatrixBase< OtherDerived > &  other  )  const [inline, inherited]

sparse * dense (returns a dense object unless it is an outer product)

const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const SparseMatrix< _Scalar, _Options, _Index > > operator* ( const std::complex< Scalar > &  scalar  )  const [inline, inherited]

Overloaded for efficient real matrix times complex scalar value

const ScalarMultipleReturnType operator* ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of *this scaled by the scalar factor scalar
const CwiseBinaryOp< internal::scalar_sum_op <Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> operator+ ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
const CwiseBinaryOp< internal::scalar_difference_op <Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> operator- ( const Eigen::SparseMatrixBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > operator- (  )  const [inline, inherited]
Returns:
an expression of the opposite of *this
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > operator/ ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of *this divided by the scalar value scalar
Index* outerIndexPtr (  )  [inline]
Returns:
a non-const pointer to the array of the starting positions of the inner vectors. This function is aimed at interoperability with other libraries.
See also:
valuePtr(), innerIndexPtr()
const Index* outerIndexPtr (  )  const [inline]
Returns:
a const pointer to the array of the starting positions of the inner vectors. This function is aimed at interoperability with other libraries.
See also:
valuePtr(), innerIndexPtr()

Referenced by SparseLU< _MatrixType, _OrderingType >::analyzePattern(), SparseQR< _MatrixType, _OrderingType >::factorize(), and SparseLU< _MatrixType, _OrderingType >::factorize().

Index outerSize (  )  const [inline]
Returns:
the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major)

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by SparseMatrix< Scalar, RowMajor >::insert(), and SparseMatrix< Scalar, RowMajor >::resize().

void prune ( const KeepFunc &  keep = KeepFunc()  )  [inline]

Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate keep. The functor type KeepFunc must implement the following function:

 bool operator() (const Index& row, const Index& col, const Scalar& value) const;
See also:
prune(Scalar,RealScalar)
void prune ( const Scalar &  reference,
const RealScalar &  epsilon = NumTraits<RealScalar>::dummy_precision() 
) [inline]

Suppresses all nonzeros which are much smaller than reference under the tolerence epsilon

Referenced by SparseMatrix< Scalar, RowMajor >::prune().

NonConstRealReturnType real (  )  [inline, inherited]
Returns:
a non const expression of the real part of *this.
See also:
imag()
RealReturnType real (  )  const [inline, inherited]
Returns:
a read-only expression of the real part of *this.
See also:
imag()
void reserve ( const SizesType &  reserveSizes  )  [inline]

Preallocates reserveSize[j] non zeros for each column (resp. row) j.

This function turns the matrix in non-compressed mode

void reserve ( Index  reserveSize  )  [inline]

Preallocates reserveSize non zeros.

Precondition: the matrix must be in compressed mode.

Referenced by SparseQR< _MatrixType, _OrderingType >::analyzePattern(), and SparseMatrix< Scalar, RowMajor >::insert().

void resize ( Index  rows,
Index  cols 
) [inline]

Resizes the matrix to a rows x cols matrix and initializes it to zero.

See also:
resizeNonZeros(Index), reserve(), setZero()

Referenced by SparseQR< _MatrixType, _OrderingType >::analyzePattern(), SparseMatrix< Scalar, RowMajor >::conservativeResize(), and SparseMatrix< Scalar, RowMajor >::SparseMatrix().

ConstNColsBlockXpr<N>::Type rightCols ( Index  n = N  )  const [inline, inherited]

This is the const version of rightCols<int>().

NColsBlockXpr<N>::Type rightCols ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr rightCols ( Index  n  )  const [inline, inherited]

This is the const version of rightCols(Index).

ColsBlockXpr rightCols ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Parameters:
n the number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstRowXpr row ( Index  i  )  const [inline, inherited]

This is the const version of row().

RowXpr row ( Index  i  )  [inline, inherited]
Returns:
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See also:
col(), class Block
ConstFixedSegmentReturnType<N>::Type segment ( Index  start,
Index  n = N 
) const [inline, inherited]

This is the const version of segment<int>(Index).

FixedSegmentReturnType<N>::Type segment ( Index  start,
Index  n = N 
) [inline, inherited]
Returns:
a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
start the index of the first element in the segment
n the number of coefficients in the segment as specified at compile-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2  6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstSegmentReturnType segment ( Index  start,
Index  n 
) const [inline, inherited]

This is the const version of segment(Index,Index).

SegmentReturnType segment ( Index  start,
Index  n 
) [inline, inherited]
Returns:
a dynamic-size expression of a segment (i.e. a vector block) in *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
start the first coefficient in the segment
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2  6
Now the vector v is:
7 0 0 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, segment(Index)
void setFromTriplets ( const InputIterators &  begin,
const InputIterators &  end 
) [inline]

Fill the matrix *this with the list of triplets defined by the iterator range begin - end.

A triplet is a tuple (i,j,value) defining a non-zero element. The input list of triplets does not have to be sorted, and can contains duplicated elements. In any case, the result is a sorted and compressed sparse matrix where the duplicates have been summed up. This is a O(n) operation, with n the number of triplet elements. The initial contents of *this is destroyed. The matrix *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, or the resize(Index,Index) method. The sizes are not extracted from the triplet list.

The InputIterators value_type must provide the following interface:

 Scalar value() const; // the value
 Scalar row() const;   // the row index i
 Scalar col() const;   // the column index j

See for instance the Eigen::Triplet template class.

Here is a typical usage example:

    typedef Triplet<double> T;
    std::vector<T> tripletList;
    triplets.reserve(estimation_of_entries);
    for(...)
    {
      // ...
      tripletList.push_back(T(i,j,v_ij));
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(tripletList.begin(), tripletList.end());
    // m is ready to go!
Warning:
The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather be explicitely stored into a std::vector for instance.
void setIdentity (  )  [inline]

Sets *this to the identity matrix

void setZero (  )  [inline]

Removes all non zeros but keep allocated memory

Referenced by SparseQR< _MatrixType, _OrderingType >::factorize().

Index size (  )  const [inline, inherited]
Returns:
the number of coefficients, which is rows()*cols().
See also:
rows(), cols().

Reimplemented from EigenBase< SparseMatrix< _Scalar, _Options, _Index > >.

void swap ( SparseMatrix< _Scalar, _Options, _Index > &  other  )  [inline]

Swaps the content of two sparse matrices of the same type. This is a fast operation that simply swaps the underlying pointers and parameters.

Referenced by SparseMatrix< Scalar, RowMajor >::swap().

ConstFixedSegmentReturnType<N>::Type tail ( Index  n = N  )  const [inline, inherited]

This is the const version of tail<int>.

FixedSegmentReturnType<N>::Type tail ( Index  n = N  )  [inline, inherited]
Returns:
a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
n the number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstSegmentReturnType tail ( Index  n  )  const [inline, inherited]

This is the const version of tail(Index).

SegmentReturnType tail ( Index  n  )  [inline, inherited]
Returns:
a dynamic-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topLeftCorner<int, int>(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a top-left corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.topLeftCorner<2,Dynamic>(2,2) << endl;
m.topLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,Dynamic>(2,2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topLeftCorner (  )  const [inline, inherited]

This is the const version of topLeftCorner<int, int>().

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topLeftCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > > topLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topLeftCorner(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > > topLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-left corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topRightCorner<int, int>(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a top-right corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.topRightCorner<2,Dynamic>(2,2) << endl;
m.topRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,Dynamic>(2,2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block
const Block<const SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topRightCorner (  )  const [inline, inherited]

This is the const version of topRightCorner<int, int>().

Block<SparseMatrix< _Scalar, _Options, _Index > , CRows, CCols> topRightCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size top-right corner of *this.
Template Parameters:
CRows the number of rows in the corner
CCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block<int,int>(Index,Index)
const Block<const SparseMatrix< _Scalar, _Options, _Index > > topRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topRightCorner(Index, Index).

Block<SparseMatrix< _Scalar, _Options, _Index > > topRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-right corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type topRows ( Index  n = N  )  const [inline, inherited]

This is the const version of topRows<int>().

NRowsBlockXpr<N>::Type topRows ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr topRows ( Index  n  )  const [inline, inherited]

This is the const version of topRows(Index).

RowsBlockXpr topRows ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Parameters:
n the number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
SparseSymmetricPermutationProduct<SparseMatrix< _Scalar, _Options, _Index > ,Upper|Lower> twistedBy ( const PermutationMatrix< Dynamic, Dynamic, Index > &  perm  )  const [inline, inherited]
Returns:
an expression of P H P^-1 where H is the matrix represented by *this
const CwiseUnaryOp<CustomUnaryOp, const SparseMatrix< _Scalar, _Options, _Index > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()  )  const [inline, inherited]

Apply a unary operator coefficient-wise.

Parameters:
[in] func Functor implementing the unary operator
Template Parameters:
CustomUnaryOp Type of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define function to be applied coefficient-wise
double ramp(double x)
{
  if (x > 0)
    return x;
  else 
    return 0;
}

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const SparseMatrix< _Scalar, _Options, _Index > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()  )  const [inline, inherited]
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
Scalar* valuePtr (  )  [inline]
Returns:
a non-const pointer to the array of values. This function is aimed at interoperability with other libraries.
See also:
innerIndexPtr(), outerIndexPtr()
const Scalar* valuePtr (  )  const [inline]
Returns:
a const pointer to the array of values. This function is aimed at interoperability with other libraries.
See also:
innerIndexPtr(), outerIndexPtr()

Friends And Related Function Documentation

const DenseSparseProductReturnType<OtherDerived,SparseMatrix< _Scalar, _Options, _Index > >::Type operator* ( const MatrixBase< OtherDerived > &  lhs,
const SparseMatrix< _Scalar, _Options, _Index > &  rhs 
) [friend, inherited]

dense * sparse (return a dense object unless it is an outer product)


The documentation for this class was generated from the following file: