next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2       2     2    2    2 2    2    2 2    2    2   2
o2 = ideal (k*u - i*w, d o - q*x , b*g  - e k, m t  - c i, d q  - f n, s u*x 
     ------------------------------------------------------------------------
             2 2
     - r, b*h v  - p)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 3 2 4 2 2    2   2    3 4 3 3 3    2 3 3 2    3 3 2 3 3 3  
o3 = ideal (a d e i n o  - j k*w x, d m p s t  - a c e i v, c h m s w x  -
     ------------------------------------------------------------------------
      4 2 4 4   3 2 2 3 2 4 3    3   2
     b d f n , a b f l o q x  - d p*u )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous