twist takes a toric vector bundle
E in Klyachko's description and a list
of integers
L. The list must contain one entry for each ray of the underlying fan. Then
it computes the twist of the vector bundle by the line bundle given by these integers
(see
weilToCartier).
i1 : E = tangentBundle hirzebruchFan 2
o1 = {dimension of the variety => 2 }
number of affine charts => 4
number of rays => 4
rank of the vector bundle => 2
o1 : ToricVectorBundleKlyachko
|
i2 : L = {1,-2,3,-4}
o2 = {1, -2, 3, -4}
o2 : List
|
i3 : E1 = twist(E,L)
o3 = {dimension of the variety => 2 }
number of affine charts => 4
number of rays => 4
rank of the vector bundle => 2
o3 : ToricVectorBundleKlyachko
|
i4 : details E1
o4 = HashTable{| -1 | => (| -1 1/2 |, | 3 4 |)}
| 2 | | 2 0 |
| 0 | => (| 0 1 |, | 1 2 |)
| -1 | | -1 0 |
| 0 | => (| 0 1 |, | -2 -1 |)
| 1 | | 1 0 |
| 1 | => (| 1 0 |, | -4 -3 |)
| 0 | | 0 1 |
o4 : HashTable
|