.
i1 : R = ZZ/32003[x_1..x_3];
|
i2 : g = random(R^1, R^{-4})
o2 = | -14389x_1^4+4628x_1^3x_2+5341x_1^2x_2^2+13483x_1x_2^3-10599x_2^4+3602x
------------------------------------------------------------------------
_1^3x_3+5836x_1^2x_2x_3+833x_1x_2^2x_3-10158x_2^3x_3-8966x_1^2x_3^2-
------------------------------------------------------------------------
8641x_1x_2x_3^2-7176x_2^2x_3^2+13583x_1x_3^3+3223x_2x_3^3-7203x_3^4 |
1 1
o2 : Matrix R <--- R
|
i3 : f = fromDual g
o3 = | x_2^2x_3+11502x_1x_3^2-1204x_2x_3^2-6832x_3^3
------------------------------------------------------------------------
x_1x_2x_3-5352x_1x_3^2+9171x_2x_3^2-2529x_3^3
------------------------------------------------------------------------
x_1^2x_3-15947x_1x_3^2-2852x_2x_3^2+45x_3^3
------------------------------------------------------------------------
x_2^3+9266x_1x_3^2-15195x_2x_3^2-15301x_3^3
------------------------------------------------------------------------
x_1x_2^2+15016x_1x_3^2-8190x_2x_3^2-7680x_3^3
------------------------------------------------------------------------
x_1^2x_2+9006x_1x_3^2+8311x_2x_3^2-1588x_3^3
------------------------------------------------------------------------
x_1^3+6273x_1x_3^2-6873x_2x_3^2-13003x_3^3 |
1 7
o3 : Matrix R <--- R
|
i4 : res ideal f
1 7 7 1
o4 = R <-- R <-- R <-- R <-- 0
0 1 2 3 4
o4 : ChainComplex
|
i5 : betti oo
0 1 2 3
o5 = total: 1 7 7 1
0: 1 . . .
1: . . . .
2: . 7 7 .
3: . . . .
4: . . . 1
o5 : BettiTally
|