Functions | |
template<class T> | |
int | itpp::length (const Vec< T > &v) |
Length of vector. | |
template<class T> | |
int | itpp::size (const Vec< T > &v) |
Length of vector. | |
template<class T> | |
T | itpp::sum (const Vec< T > &v) |
Sum of all elements in the vector. | |
template<class T> | |
Vec< T > | itpp::sum (const Mat< T > &m, int dim=1) |
Sum of elements in the matrix m . | |
template<class T> | |
T | itpp::sum_sqr (const Vec< T > &v) |
Sum of square of the elements in a vector. | |
template<class T> | |
Vec< T > | itpp::sum_sqr (const Mat< T > &m, int dim=1) |
Sum of the square of elements in the matrix m . | |
template<class T> | |
Vec< T > | itpp::cumsum (const Vec< T > &v) |
Cumulative sum of all elements in the vector. | |
template<class T> | |
Mat< T > | itpp::cumsum (const Mat< T > &m, int dim=1) |
Cumulative sum of elements in the matrix m . | |
template<class T> | |
T | itpp::prod (const Vec< T > &v) |
The product of all elements in the vector. | |
template<class T> | |
Vec< T > | itpp::prod (const Mat< T > &m, int dim=1) |
Product of elements in the matrix m . | |
template<class T> | |
Vec< T > | itpp::cross (const Vec< T > &v1, const Vec< T > &v2) |
Vector cross product. Vectors need to be of size 3. | |
template<class T, class fT> | |
Vec< T > | itpp::apply_function (fT(*f)(fT), const Vec< T > &data) |
Apply arbitrary function to a vector. | |
template<class T, class fT> | |
Mat< T > | itpp::apply_function (fT(*f)(fT), const Mat< T > &data) |
Apply arbitrary functions to a matrix. | |
template<class T> | |
Vec< T > | itpp::zero_pad (const Vec< T > &v, int n) |
Zero-pad a vector to size n. | |
template<class T> | |
Vec< T > | itpp::zero_pad (const Vec< T > &v) |
Zero-pad a vector to the nearest greater power of two. | |
template<class T> | |
Mat< T > | itpp::zero_pad (const Mat< T > &m, int rows, int cols) |
Zero-pad a matrix to size rows x cols. | |
template<class T> | |
T | itpp::index_zero_pad (const Vec< T > &v, const int index) |
template<class T> | |
void | itpp::transpose (const Mat< T > &m, Mat< T > &out) |
Transposition of the matrix m returning the transposed matrix in out . | |
template<class T> | |
Mat< T > | itpp::transpose (const Mat< T > &m) |
Transposition of the matrix m . | |
template<class T> | |
void | itpp::hermitian_transpose (const Mat< T > &m, Mat< T > &out) |
template<class T> | |
Mat< T > | itpp::hermitian_transpose (const Mat< T > &m) |
Hermitian transpose (complex conjugate transpose) of the matrix m . | |
template<class Num_T> | |
bool | itpp::is_hermitian (const Mat< Num_T > &X) |
Returns true if matrix X is hermitian, false otherwise. | |
template<class Num_T> | |
bool | itpp::is_unitary (const Mat< Num_T > &X) |
Returns true if matrix X is unitary, false otherwise. | |
template<class Num_T> | |
Mat< Num_T > | itpp::kron (const Mat< Num_T > &X, const Mat< Num_T > &Y) |
Computes the Kronecker product of two matrices. | |
cmat | itpp::sqrtm (const cmat &A) |
Square root of the complex square matrix A . | |
cmat | itpp::sqrtm (const mat &A) |
Square root of the real square matrix A . |
|
|
Length of vector.
Definition at line 54 of file matfunc.h. Referenced by itpp::Vec< bmat >::alloc(), itpp::it_file::low_level_write(), itpp::Complex_Normal_RNG::sample_vector(), itpp::Normal_RNG::sample_vector(), itpp::Uniform_RNG::sample_vector(), itpp::Bernoulli_RNG::sample_vector(), itpp::Vec< bmat >::set_length(), itpp::Vec< Num_T >::set_size(), itpp::Vec< bmat >::Vec(), and itpp::it_file::write_data_header(). |
|
Sum of all elements in the vector.
|
|
Sum of elements in the matrix
Definition at line 77 of file matfunc.h. References it_assert. Referenced by itpp::BERC::estimate_delay(), itpp::fir1(), itpp::Modulator_NCD::map_demod(), itpp::Modulator_NRD::map_demod(), itpp::mean(), itpp::Modulator_NCD::modulate_bits(), itpp::Modulator_NRD::modulate_bits(), itpp::norm(), itpp::quad(), itpp::ND_UPAM::sphere_decoding(), itpp::Sparse_Vec< T >::sqr(), itpp::trace(), itpp::vqtrain(), and itpp::xcorr(). |
|
Sum of square of the elements in a vector.
|
|
Sum of the square of elements in the matrix
Definition at line 118 of file matfunc.h. References it_assert. |
|
Cumulative sum of all elements in the vector.
|
|
Cumulative sum of elements in the matrix
Definition at line 160 of file matfunc.h. References it_assert. |
|
The product of all elements in the vector.
Definition at line 178 of file matfunc.h. References it_assert. |
|
Product of elements in the matrix
Definition at line 197 of file matfunc.h. References it_assert. |
|
Vector cross product. Vectors need to be of size 3.
Definition at line 223 of file matfunc.h. References it_assert. |
|
Apply arbitrary function to a vector.
|
|
Apply arbitrary functions to a matrix.
|
|
Zero-pad a vector to size n.
Definition at line 267 of file matfunc.h. References it_assert. |
|
Zero-pad a vector to the nearest greater power of two.
Definition at line 280 of file matfunc.h. References itpp::levels2bits(), itpp::pow2i(), and itpp::zero_pad(). |
|
Zero-pad a matrix to size rows x cols.
Definition at line 289 of file matfunc.h. References it_assert. Referenced by itpp::freqz(), itpp::spectrum(), itpp::xcorr(), and itpp::zero_pad(). |
|
Return zero if indexing outside the vector Definition at line 307 of file matfunc.h. Referenced by itpp::xcorr_old(). |
|
Transposition of the matrix
|
|
Transposition of the matrix
|
|
Hermitian transpose (complex conjugate transpose) of the matrix |
|
Hermitian transpose (complex conjugate transpose) of the matrix
Definition at line 332 of file matfunc.h. Referenced by itpp::Vec< bmat >::H(), itpp::Mat< unsigned short int >::H(), and itpp::norm(). |
|
Returns true if matrix
![]()
|
|
Returns true if matrix
![]()
Definition at line 364 of file matfunc.h. References itpp::inv(). |
|
Computes the Kronecker product of two matrices.
|
|
Square root of the complex square matrix
This function computes the matrix square root of the complex square matrix Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester Centre for Computational Mathematics, Manchester, England, January 1999
Definition at line 48 of file matfunc.cpp. References itpp::conj(), itpp::schur(), and itpp::sqrt(). Referenced by itpp::sqrtm(). |
|
Square root of the real square matrix
This function computes the matrix square root of the real square matrix Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester Centre for Computational Mathematics, Manchester, England, January 1999
Definition at line 42 of file matfunc.cpp. References itpp::sqrtm(), and itpp::to_cmat(). |
Generated on Fri Jan 11 08:51:41 2008 for IT++ by Doxygen 1.3.9.1