libstdc++
|
00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2016 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_multimap.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MULTIMAP_H 00057 #define _STL_MULTIMAP_H 1 00058 00059 #include <bits/concept_check.h> 00060 #if __cplusplus >= 201103L 00061 #include <initializer_list> 00062 #endif 00063 00064 namespace std _GLIBCXX_VISIBILITY(default) 00065 { 00066 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00067 00068 /** 00069 * @brief A standard container made up of (key,value) pairs, which can be 00070 * retrieved based on a key, in logarithmic time. 00071 * 00072 * @ingroup associative_containers 00073 * 00074 * @tparam _Key Type of key objects. 00075 * @tparam _Tp Type of mapped objects. 00076 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00077 * @tparam _Alloc Allocator type, defaults to 00078 * allocator<pair<const _Key, _Tp>. 00079 * 00080 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00081 * <a href="tables.html#66">reversible container</a>, and an 00082 * <a href="tables.html#69">associative container</a> (using equivalent 00083 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00084 * is T, and the value_type is std::pair<const Key,T>. 00085 * 00086 * Multimaps support bidirectional iterators. 00087 * 00088 * The private tree data is declared exactly the same way for map and 00089 * multimap; the distinction is made entirely in how the tree functions are 00090 * called (*_unique versus *_equal, same as the standard). 00091 */ 00092 template <typename _Key, typename _Tp, 00093 typename _Compare = std::less<_Key>, 00094 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00095 class multimap 00096 { 00097 public: 00098 typedef _Key key_type; 00099 typedef _Tp mapped_type; 00100 typedef std::pair<const _Key, _Tp> value_type; 00101 typedef _Compare key_compare; 00102 typedef _Alloc allocator_type; 00103 00104 private: 00105 // concept requirements 00106 typedef typename _Alloc::value_type _Alloc_value_type; 00107 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00108 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00109 _BinaryFunctionConcept) 00110 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00111 00112 public: 00113 class value_compare 00114 : public std::binary_function<value_type, value_type, bool> 00115 { 00116 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00117 protected: 00118 _Compare comp; 00119 00120 value_compare(_Compare __c) 00121 : comp(__c) { } 00122 00123 public: 00124 bool operator()(const value_type& __x, const value_type& __y) const 00125 { return comp(__x.first, __y.first); } 00126 }; 00127 00128 private: 00129 /// This turns a red-black tree into a [multi]map. 00130 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00131 rebind<value_type>::other _Pair_alloc_type; 00132 00133 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00134 key_compare, _Pair_alloc_type> _Rep_type; 00135 /// The actual tree structure. 00136 _Rep_type _M_t; 00137 00138 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 00139 00140 public: 00141 // many of these are specified differently in ISO, but the following are 00142 // "functionally equivalent" 00143 typedef typename _Alloc_traits::pointer pointer; 00144 typedef typename _Alloc_traits::const_pointer const_pointer; 00145 typedef typename _Alloc_traits::reference reference; 00146 typedef typename _Alloc_traits::const_reference const_reference; 00147 typedef typename _Rep_type::iterator iterator; 00148 typedef typename _Rep_type::const_iterator const_iterator; 00149 typedef typename _Rep_type::size_type size_type; 00150 typedef typename _Rep_type::difference_type difference_type; 00151 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00153 00154 // [23.3.2] construct/copy/destroy 00155 // (get_allocator() is also listed in this section) 00156 00157 /** 00158 * @brief Default constructor creates no elements. 00159 */ 00160 multimap() 00161 _GLIBCXX_NOEXCEPT_IF( 00162 is_nothrow_default_constructible<allocator_type>::value 00163 && is_nothrow_default_constructible<key_compare>::value) 00164 : _M_t() { } 00165 00166 /** 00167 * @brief Creates a %multimap with no elements. 00168 * @param __comp A comparison object. 00169 * @param __a An allocator object. 00170 */ 00171 explicit 00172 multimap(const _Compare& __comp, 00173 const allocator_type& __a = allocator_type()) 00174 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00175 00176 /** 00177 * @brief %Multimap copy constructor. 00178 * @param __x A %multimap of identical element and allocator types. 00179 * 00180 * The newly-created %multimap uses a copy of the allocation object 00181 * used by @a __x. 00182 */ 00183 multimap(const multimap& __x) 00184 : _M_t(__x._M_t) { } 00185 00186 #if __cplusplus >= 201103L 00187 /** 00188 * @brief %Multimap move constructor. 00189 * @param __x A %multimap of identical element and allocator types. 00190 * 00191 * The newly-created %multimap contains the exact contents of @a __x. 00192 * The contents of @a __x are a valid, but unspecified %multimap. 00193 */ 00194 multimap(multimap&& __x) 00195 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00196 : _M_t(std::move(__x._M_t)) { } 00197 00198 /** 00199 * @brief Builds a %multimap from an initializer_list. 00200 * @param __l An initializer_list. 00201 * @param __comp A comparison functor. 00202 * @param __a An allocator object. 00203 * 00204 * Create a %multimap consisting of copies of the elements from 00205 * the initializer_list. This is linear in N if the list is already 00206 * sorted, and NlogN otherwise (where N is @a __l.size()). 00207 */ 00208 multimap(initializer_list<value_type> __l, 00209 const _Compare& __comp = _Compare(), 00210 const allocator_type& __a = allocator_type()) 00211 : _M_t(__comp, _Pair_alloc_type(__a)) 00212 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00213 00214 /// Allocator-extended default constructor. 00215 explicit 00216 multimap(const allocator_type& __a) 00217 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 00218 00219 /// Allocator-extended copy constructor. 00220 multimap(const multimap& __m, const allocator_type& __a) 00221 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 00222 00223 /// Allocator-extended move constructor. 00224 multimap(multimap&& __m, const allocator_type& __a) 00225 noexcept(is_nothrow_copy_constructible<_Compare>::value 00226 && _Alloc_traits::_S_always_equal()) 00227 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 00228 00229 /// Allocator-extended initialier-list constructor. 00230 multimap(initializer_list<value_type> __l, const allocator_type& __a) 00231 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00232 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00233 00234 /// Allocator-extended range constructor. 00235 template<typename _InputIterator> 00236 multimap(_InputIterator __first, _InputIterator __last, 00237 const allocator_type& __a) 00238 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00239 { _M_t._M_insert_equal(__first, __last); } 00240 #endif 00241 00242 /** 00243 * @brief Builds a %multimap from a range. 00244 * @param __first An input iterator. 00245 * @param __last An input iterator. 00246 * 00247 * Create a %multimap consisting of copies of the elements from 00248 * [__first,__last). This is linear in N if the range is already sorted, 00249 * and NlogN otherwise (where N is distance(__first,__last)). 00250 */ 00251 template<typename _InputIterator> 00252 multimap(_InputIterator __first, _InputIterator __last) 00253 : _M_t() 00254 { _M_t._M_insert_equal(__first, __last); } 00255 00256 /** 00257 * @brief Builds a %multimap from a range. 00258 * @param __first An input iterator. 00259 * @param __last An input iterator. 00260 * @param __comp A comparison functor. 00261 * @param __a An allocator object. 00262 * 00263 * Create a %multimap consisting of copies of the elements from 00264 * [__first,__last). This is linear in N if the range is already sorted, 00265 * and NlogN otherwise (where N is distance(__first,__last)). 00266 */ 00267 template<typename _InputIterator> 00268 multimap(_InputIterator __first, _InputIterator __last, 00269 const _Compare& __comp, 00270 const allocator_type& __a = allocator_type()) 00271 : _M_t(__comp, _Pair_alloc_type(__a)) 00272 { _M_t._M_insert_equal(__first, __last); } 00273 00274 // FIXME There is no dtor declared, but we should have something generated 00275 // by Doxygen. I don't know what tags to add to this paragraph to make 00276 // that happen: 00277 /** 00278 * The dtor only erases the elements, and note that if the elements 00279 * themselves are pointers, the pointed-to memory is not touched in any 00280 * way. Managing the pointer is the user's responsibility. 00281 */ 00282 00283 /** 00284 * @brief %Multimap assignment operator. 00285 * @param __x A %multimap of identical element and allocator types. 00286 * 00287 * All the elements of @a __x are copied, but unlike the copy 00288 * constructor, the allocator object is not copied. 00289 */ 00290 multimap& 00291 operator=(const multimap& __x) 00292 { 00293 _M_t = __x._M_t; 00294 return *this; 00295 } 00296 00297 #if __cplusplus >= 201103L 00298 /// Move assignment operator. 00299 multimap& 00300 operator=(multimap&&) = default; 00301 00302 /** 00303 * @brief %Multimap list assignment operator. 00304 * @param __l An initializer_list. 00305 * 00306 * This function fills a %multimap with copies of the elements 00307 * in the initializer list @a __l. 00308 * 00309 * Note that the assignment completely changes the %multimap and 00310 * that the resulting %multimap's size is the same as the number 00311 * of elements assigned. Old data may be lost. 00312 */ 00313 multimap& 00314 operator=(initializer_list<value_type> __l) 00315 { 00316 _M_t._M_assign_equal(__l.begin(), __l.end()); 00317 return *this; 00318 } 00319 #endif 00320 00321 /// Get a copy of the memory allocation object. 00322 allocator_type 00323 get_allocator() const _GLIBCXX_NOEXCEPT 00324 { return allocator_type(_M_t.get_allocator()); } 00325 00326 // iterators 00327 /** 00328 * Returns a read/write iterator that points to the first pair in the 00329 * %multimap. Iteration is done in ascending order according to the 00330 * keys. 00331 */ 00332 iterator 00333 begin() _GLIBCXX_NOEXCEPT 00334 { return _M_t.begin(); } 00335 00336 /** 00337 * Returns a read-only (constant) iterator that points to the first pair 00338 * in the %multimap. Iteration is done in ascending order according to 00339 * the keys. 00340 */ 00341 const_iterator 00342 begin() const _GLIBCXX_NOEXCEPT 00343 { return _M_t.begin(); } 00344 00345 /** 00346 * Returns a read/write iterator that points one past the last pair in 00347 * the %multimap. Iteration is done in ascending order according to the 00348 * keys. 00349 */ 00350 iterator 00351 end() _GLIBCXX_NOEXCEPT 00352 { return _M_t.end(); } 00353 00354 /** 00355 * Returns a read-only (constant) iterator that points one past the last 00356 * pair in the %multimap. Iteration is done in ascending order according 00357 * to the keys. 00358 */ 00359 const_iterator 00360 end() const _GLIBCXX_NOEXCEPT 00361 { return _M_t.end(); } 00362 00363 /** 00364 * Returns a read/write reverse iterator that points to the last pair in 00365 * the %multimap. Iteration is done in descending order according to the 00366 * keys. 00367 */ 00368 reverse_iterator 00369 rbegin() _GLIBCXX_NOEXCEPT 00370 { return _M_t.rbegin(); } 00371 00372 /** 00373 * Returns a read-only (constant) reverse iterator that points to the 00374 * last pair in the %multimap. Iteration is done in descending order 00375 * according to the keys. 00376 */ 00377 const_reverse_iterator 00378 rbegin() const _GLIBCXX_NOEXCEPT 00379 { return _M_t.rbegin(); } 00380 00381 /** 00382 * Returns a read/write reverse iterator that points to one before the 00383 * first pair in the %multimap. Iteration is done in descending order 00384 * according to the keys. 00385 */ 00386 reverse_iterator 00387 rend() _GLIBCXX_NOEXCEPT 00388 { return _M_t.rend(); } 00389 00390 /** 00391 * Returns a read-only (constant) reverse iterator that points to one 00392 * before the first pair in the %multimap. Iteration is done in 00393 * descending order according to the keys. 00394 */ 00395 const_reverse_iterator 00396 rend() const _GLIBCXX_NOEXCEPT 00397 { return _M_t.rend(); } 00398 00399 #if __cplusplus >= 201103L 00400 /** 00401 * Returns a read-only (constant) iterator that points to the first pair 00402 * in the %multimap. Iteration is done in ascending order according to 00403 * the keys. 00404 */ 00405 const_iterator 00406 cbegin() const noexcept 00407 { return _M_t.begin(); } 00408 00409 /** 00410 * Returns a read-only (constant) iterator that points one past the last 00411 * pair in the %multimap. Iteration is done in ascending order according 00412 * to the keys. 00413 */ 00414 const_iterator 00415 cend() const noexcept 00416 { return _M_t.end(); } 00417 00418 /** 00419 * Returns a read-only (constant) reverse iterator that points to the 00420 * last pair in the %multimap. Iteration is done in descending order 00421 * according to the keys. 00422 */ 00423 const_reverse_iterator 00424 crbegin() const noexcept 00425 { return _M_t.rbegin(); } 00426 00427 /** 00428 * Returns a read-only (constant) reverse iterator that points to one 00429 * before the first pair in the %multimap. Iteration is done in 00430 * descending order according to the keys. 00431 */ 00432 const_reverse_iterator 00433 crend() const noexcept 00434 { return _M_t.rend(); } 00435 #endif 00436 00437 // capacity 00438 /** Returns true if the %multimap is empty. */ 00439 bool 00440 empty() const _GLIBCXX_NOEXCEPT 00441 { return _M_t.empty(); } 00442 00443 /** Returns the size of the %multimap. */ 00444 size_type 00445 size() const _GLIBCXX_NOEXCEPT 00446 { return _M_t.size(); } 00447 00448 /** Returns the maximum size of the %multimap. */ 00449 size_type 00450 max_size() const _GLIBCXX_NOEXCEPT 00451 { return _M_t.max_size(); } 00452 00453 // modifiers 00454 #if __cplusplus >= 201103L 00455 /** 00456 * @brief Build and insert a std::pair into the %multimap. 00457 * 00458 * @param __args Arguments used to generate a new pair instance (see 00459 * std::piecewise_contruct for passing arguments to each 00460 * part of the pair constructor). 00461 * 00462 * @return An iterator that points to the inserted (key,value) pair. 00463 * 00464 * This function builds and inserts a (key, value) %pair into the 00465 * %multimap. 00466 * Contrary to a std::map the %multimap does not rely on unique keys and 00467 * thus multiple pairs with the same key can be inserted. 00468 * 00469 * Insertion requires logarithmic time. 00470 */ 00471 template<typename... _Args> 00472 iterator 00473 emplace(_Args&&... __args) 00474 { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); } 00475 00476 /** 00477 * @brief Builds and inserts a std::pair into the %multimap. 00478 * 00479 * @param __pos An iterator that serves as a hint as to where the pair 00480 * should be inserted. 00481 * @param __args Arguments used to generate a new pair instance (see 00482 * std::piecewise_contruct for passing arguments to each 00483 * part of the pair constructor). 00484 * @return An iterator that points to the inserted (key,value) pair. 00485 * 00486 * This function inserts a (key, value) pair into the %multimap. 00487 * Contrary to a std::map the %multimap does not rely on unique keys and 00488 * thus multiple pairs with the same key can be inserted. 00489 * Note that the first parameter is only a hint and can potentially 00490 * improve the performance of the insertion process. A bad hint would 00491 * cause no gains in efficiency. 00492 * 00493 * For more on @a hinting, see: 00494 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00495 * 00496 * Insertion requires logarithmic time (if the hint is not taken). 00497 */ 00498 template<typename... _Args> 00499 iterator 00500 emplace_hint(const_iterator __pos, _Args&&... __args) 00501 { 00502 return _M_t._M_emplace_hint_equal(__pos, 00503 std::forward<_Args>(__args)...); 00504 } 00505 #endif 00506 00507 /** 00508 * @brief Inserts a std::pair into the %multimap. 00509 * @param __x Pair to be inserted (see std::make_pair for easy creation 00510 * of pairs). 00511 * @return An iterator that points to the inserted (key,value) pair. 00512 * 00513 * This function inserts a (key, value) pair into the %multimap. 00514 * Contrary to a std::map the %multimap does not rely on unique keys and 00515 * thus multiple pairs with the same key can be inserted. 00516 * 00517 * Insertion requires logarithmic time. 00518 */ 00519 iterator 00520 insert(const value_type& __x) 00521 { return _M_t._M_insert_equal(__x); } 00522 00523 #if __cplusplus >= 201103L 00524 template<typename _Pair, typename = typename 00525 std::enable_if<std::is_constructible<value_type, 00526 _Pair&&>::value>::type> 00527 iterator 00528 insert(_Pair&& __x) 00529 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); } 00530 #endif 00531 00532 /** 00533 * @brief Inserts a std::pair into the %multimap. 00534 * @param __position An iterator that serves as a hint as to where the 00535 * pair should be inserted. 00536 * @param __x Pair to be inserted (see std::make_pair for easy creation 00537 * of pairs). 00538 * @return An iterator that points to the inserted (key,value) pair. 00539 * 00540 * This function inserts a (key, value) pair into the %multimap. 00541 * Contrary to a std::map the %multimap does not rely on unique keys and 00542 * thus multiple pairs with the same key can be inserted. 00543 * Note that the first parameter is only a hint and can potentially 00544 * improve the performance of the insertion process. A bad hint would 00545 * cause no gains in efficiency. 00546 * 00547 * For more on @a hinting, see: 00548 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00549 * 00550 * Insertion requires logarithmic time (if the hint is not taken). 00551 */ 00552 iterator 00553 #if __cplusplus >= 201103L 00554 insert(const_iterator __position, const value_type& __x) 00555 #else 00556 insert(iterator __position, const value_type& __x) 00557 #endif 00558 { return _M_t._M_insert_equal_(__position, __x); } 00559 00560 #if __cplusplus >= 201103L 00561 template<typename _Pair, typename = typename 00562 std::enable_if<std::is_constructible<value_type, 00563 _Pair&&>::value>::type> 00564 iterator 00565 insert(const_iterator __position, _Pair&& __x) 00566 { return _M_t._M_insert_equal_(__position, 00567 std::forward<_Pair>(__x)); } 00568 #endif 00569 00570 /** 00571 * @brief A template function that attempts to insert a range 00572 * of elements. 00573 * @param __first Iterator pointing to the start of the range to be 00574 * inserted. 00575 * @param __last Iterator pointing to the end of the range. 00576 * 00577 * Complexity similar to that of the range constructor. 00578 */ 00579 template<typename _InputIterator> 00580 void 00581 insert(_InputIterator __first, _InputIterator __last) 00582 { _M_t._M_insert_equal(__first, __last); } 00583 00584 #if __cplusplus >= 201103L 00585 /** 00586 * @brief Attempts to insert a list of std::pairs into the %multimap. 00587 * @param __l A std::initializer_list<value_type> of pairs to be 00588 * inserted. 00589 * 00590 * Complexity similar to that of the range constructor. 00591 */ 00592 void 00593 insert(initializer_list<value_type> __l) 00594 { this->insert(__l.begin(), __l.end()); } 00595 #endif 00596 00597 #if __cplusplus >= 201103L 00598 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00599 // DR 130. Associative erase should return an iterator. 00600 /** 00601 * @brief Erases an element from a %multimap. 00602 * @param __position An iterator pointing to the element to be erased. 00603 * @return An iterator pointing to the element immediately following 00604 * @a position prior to the element being erased. If no such 00605 * element exists, end() is returned. 00606 * 00607 * This function erases an element, pointed to by the given iterator, 00608 * from a %multimap. Note that this function only erases the element, 00609 * and that if the element is itself a pointer, the pointed-to memory is 00610 * not touched in any way. Managing the pointer is the user's 00611 * responsibility. 00612 */ 00613 iterator 00614 erase(const_iterator __position) 00615 { return _M_t.erase(__position); } 00616 00617 // LWG 2059. 00618 _GLIBCXX_ABI_TAG_CXX11 00619 iterator 00620 erase(iterator __position) 00621 { return _M_t.erase(__position); } 00622 #else 00623 /** 00624 * @brief Erases an element from a %multimap. 00625 * @param __position An iterator pointing to the element to be erased. 00626 * 00627 * This function erases an element, pointed to by the given iterator, 00628 * from a %multimap. Note that this function only erases the element, 00629 * and that if the element is itself a pointer, the pointed-to memory is 00630 * not touched in any way. Managing the pointer is the user's 00631 * responsibility. 00632 */ 00633 void 00634 erase(iterator __position) 00635 { _M_t.erase(__position); } 00636 #endif 00637 00638 /** 00639 * @brief Erases elements according to the provided key. 00640 * @param __x Key of element to be erased. 00641 * @return The number of elements erased. 00642 * 00643 * This function erases all elements located by the given key from a 00644 * %multimap. 00645 * Note that this function only erases the element, and that if 00646 * the element is itself a pointer, the pointed-to memory is not touched 00647 * in any way. Managing the pointer is the user's responsibility. 00648 */ 00649 size_type 00650 erase(const key_type& __x) 00651 { return _M_t.erase(__x); } 00652 00653 #if __cplusplus >= 201103L 00654 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00655 // DR 130. Associative erase should return an iterator. 00656 /** 00657 * @brief Erases a [first,last) range of elements from a %multimap. 00658 * @param __first Iterator pointing to the start of the range to be 00659 * erased. 00660 * @param __last Iterator pointing to the end of the range to be 00661 * erased . 00662 * @return The iterator @a __last. 00663 * 00664 * This function erases a sequence of elements from a %multimap. 00665 * Note that this function only erases the elements, and that if 00666 * the elements themselves are pointers, the pointed-to memory is not 00667 * touched in any way. Managing the pointer is the user's 00668 * responsibility. 00669 */ 00670 iterator 00671 erase(const_iterator __first, const_iterator __last) 00672 { return _M_t.erase(__first, __last); } 00673 #else 00674 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00675 // DR 130. Associative erase should return an iterator. 00676 /** 00677 * @brief Erases a [first,last) range of elements from a %multimap. 00678 * @param __first Iterator pointing to the start of the range to be 00679 * erased. 00680 * @param __last Iterator pointing to the end of the range to 00681 * be erased. 00682 * 00683 * This function erases a sequence of elements from a %multimap. 00684 * Note that this function only erases the elements, and that if 00685 * the elements themselves are pointers, the pointed-to memory is not 00686 * touched in any way. Managing the pointer is the user's 00687 * responsibility. 00688 */ 00689 void 00690 erase(iterator __first, iterator __last) 00691 { _M_t.erase(__first, __last); } 00692 #endif 00693 00694 /** 00695 * @brief Swaps data with another %multimap. 00696 * @param __x A %multimap of the same element and allocator types. 00697 * 00698 * This exchanges the elements between two multimaps in constant time. 00699 * (It is only swapping a pointer, an integer, and an instance of 00700 * the @c Compare type (which itself is often stateless and empty), so it 00701 * should be quite fast.) 00702 * Note that the global std::swap() function is specialized such that 00703 * std::swap(m1,m2) will feed to this function. 00704 */ 00705 void 00706 swap(multimap& __x) 00707 _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value) 00708 { _M_t.swap(__x._M_t); } 00709 00710 /** 00711 * Erases all elements in a %multimap. Note that this function only 00712 * erases the elements, and that if the elements themselves are pointers, 00713 * the pointed-to memory is not touched in any way. Managing the pointer 00714 * is the user's responsibility. 00715 */ 00716 void 00717 clear() _GLIBCXX_NOEXCEPT 00718 { _M_t.clear(); } 00719 00720 // observers 00721 /** 00722 * Returns the key comparison object out of which the %multimap 00723 * was constructed. 00724 */ 00725 key_compare 00726 key_comp() const 00727 { return _M_t.key_comp(); } 00728 00729 /** 00730 * Returns a value comparison object, built from the key comparison 00731 * object out of which the %multimap was constructed. 00732 */ 00733 value_compare 00734 value_comp() const 00735 { return value_compare(_M_t.key_comp()); } 00736 00737 // multimap operations 00738 00739 //@{ 00740 /** 00741 * @brief Tries to locate an element in a %multimap. 00742 * @param __x Key of (key, value) pair to be located. 00743 * @return Iterator pointing to sought-after element, 00744 * or end() if not found. 00745 * 00746 * This function takes a key and tries to locate the element with which 00747 * the key matches. If successful the function returns an iterator 00748 * pointing to the sought after %pair. If unsuccessful it returns the 00749 * past-the-end ( @c end() ) iterator. 00750 */ 00751 iterator 00752 find(const key_type& __x) 00753 { return _M_t.find(__x); } 00754 00755 #if __cplusplus > 201103L 00756 template<typename _Kt> 00757 auto 00758 find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x)) 00759 { return _M_t._M_find_tr(__x); } 00760 #endif 00761 //@} 00762 00763 //@{ 00764 /** 00765 * @brief Tries to locate an element in a %multimap. 00766 * @param __x Key of (key, value) pair to be located. 00767 * @return Read-only (constant) iterator pointing to sought-after 00768 * element, or end() if not found. 00769 * 00770 * This function takes a key and tries to locate the element with which 00771 * the key matches. If successful the function returns a constant 00772 * iterator pointing to the sought after %pair. If unsuccessful it 00773 * returns the past-the-end ( @c end() ) iterator. 00774 */ 00775 const_iterator 00776 find(const key_type& __x) const 00777 { return _M_t.find(__x); } 00778 00779 #if __cplusplus > 201103L 00780 template<typename _Kt> 00781 auto 00782 find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x)) 00783 { return _M_t._M_find_tr(__x); } 00784 #endif 00785 //@} 00786 00787 //@{ 00788 /** 00789 * @brief Finds the number of elements with given key. 00790 * @param __x Key of (key, value) pairs to be located. 00791 * @return Number of elements with specified key. 00792 */ 00793 size_type 00794 count(const key_type& __x) const 00795 { return _M_t.count(__x); } 00796 00797 #if __cplusplus > 201103L 00798 template<typename _Kt> 00799 auto 00800 count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x)) 00801 { return _M_t._M_count_tr(__x); } 00802 #endif 00803 //@} 00804 00805 //@{ 00806 /** 00807 * @brief Finds the beginning of a subsequence matching given key. 00808 * @param __x Key of (key, value) pair to be located. 00809 * @return Iterator pointing to first element equal to or greater 00810 * than key, or end(). 00811 * 00812 * This function returns the first element of a subsequence of elements 00813 * that matches the given key. If unsuccessful it returns an iterator 00814 * pointing to the first element that has a greater value than given key 00815 * or end() if no such element exists. 00816 */ 00817 iterator 00818 lower_bound(const key_type& __x) 00819 { return _M_t.lower_bound(__x); } 00820 00821 #if __cplusplus > 201103L 00822 template<typename _Kt> 00823 auto 00824 lower_bound(const _Kt& __x) 00825 -> decltype(iterator(_M_t._M_lower_bound_tr(__x))) 00826 { return iterator(_M_t._M_lower_bound_tr(__x)); } 00827 #endif 00828 //@} 00829 00830 //@{ 00831 /** 00832 * @brief Finds the beginning of a subsequence matching given key. 00833 * @param __x Key of (key, value) pair to be located. 00834 * @return Read-only (constant) iterator pointing to first element 00835 * equal to or greater than key, or end(). 00836 * 00837 * This function returns the first element of a subsequence of 00838 * elements that matches the given key. If unsuccessful the 00839 * iterator will point to the next greatest element or, if no 00840 * such greater element exists, to end(). 00841 */ 00842 const_iterator 00843 lower_bound(const key_type& __x) const 00844 { return _M_t.lower_bound(__x); } 00845 00846 #if __cplusplus > 201103L 00847 template<typename _Kt> 00848 auto 00849 lower_bound(const _Kt& __x) const 00850 -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x))) 00851 { return const_iterator(_M_t._M_lower_bound_tr(__x)); } 00852 #endif 00853 //@} 00854 00855 //@{ 00856 /** 00857 * @brief Finds the end of a subsequence matching given key. 00858 * @param __x Key of (key, value) pair to be located. 00859 * @return Iterator pointing to the first element 00860 * greater than key, or end(). 00861 */ 00862 iterator 00863 upper_bound(const key_type& __x) 00864 { return _M_t.upper_bound(__x); } 00865 00866 #if __cplusplus > 201103L 00867 template<typename _Kt> 00868 auto 00869 upper_bound(const _Kt& __x) 00870 -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) 00871 { return iterator(_M_t._M_upper_bound_tr(__x)); } 00872 #endif 00873 //@} 00874 00875 //@{ 00876 /** 00877 * @brief Finds the end of a subsequence matching given key. 00878 * @param __x Key of (key, value) pair to be located. 00879 * @return Read-only (constant) iterator pointing to first iterator 00880 * greater than key, or end(). 00881 */ 00882 const_iterator 00883 upper_bound(const key_type& __x) const 00884 { return _M_t.upper_bound(__x); } 00885 00886 #if __cplusplus > 201103L 00887 template<typename _Kt> 00888 auto 00889 upper_bound(const _Kt& __x) const 00890 -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x))) 00891 { return const_iterator(_M_t._M_upper_bound_tr(__x)); } 00892 #endif 00893 //@} 00894 00895 //@{ 00896 /** 00897 * @brief Finds a subsequence matching given key. 00898 * @param __x Key of (key, value) pairs to be located. 00899 * @return Pair of iterators that possibly points to the subsequence 00900 * matching given key. 00901 * 00902 * This function is equivalent to 00903 * @code 00904 * std::make_pair(c.lower_bound(val), 00905 * c.upper_bound(val)) 00906 * @endcode 00907 * (but is faster than making the calls separately). 00908 */ 00909 std::pair<iterator, iterator> 00910 equal_range(const key_type& __x) 00911 { return _M_t.equal_range(__x); } 00912 00913 #if __cplusplus > 201103L 00914 template<typename _Kt> 00915 auto 00916 equal_range(const _Kt& __x) 00917 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) 00918 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } 00919 #endif 00920 //@} 00921 00922 //@{ 00923 /** 00924 * @brief Finds a subsequence matching given key. 00925 * @param __x Key of (key, value) pairs to be located. 00926 * @return Pair of read-only (constant) iterators that possibly points 00927 * to the subsequence matching given key. 00928 * 00929 * This function is equivalent to 00930 * @code 00931 * std::make_pair(c.lower_bound(val), 00932 * c.upper_bound(val)) 00933 * @endcode 00934 * (but is faster than making the calls separately). 00935 */ 00936 std::pair<const_iterator, const_iterator> 00937 equal_range(const key_type& __x) const 00938 { return _M_t.equal_range(__x); } 00939 00940 #if __cplusplus > 201103L 00941 template<typename _Kt> 00942 auto 00943 equal_range(const _Kt& __x) const 00944 -> decltype(pair<const_iterator, const_iterator>( 00945 _M_t._M_equal_range_tr(__x))) 00946 { 00947 return pair<const_iterator, const_iterator>( 00948 _M_t._M_equal_range_tr(__x)); 00949 } 00950 #endif 00951 //@} 00952 00953 template<typename _K1, typename _T1, typename _C1, typename _A1> 00954 friend bool 00955 operator==(const multimap<_K1, _T1, _C1, _A1>&, 00956 const multimap<_K1, _T1, _C1, _A1>&); 00957 00958 template<typename _K1, typename _T1, typename _C1, typename _A1> 00959 friend bool 00960 operator<(const multimap<_K1, _T1, _C1, _A1>&, 00961 const multimap<_K1, _T1, _C1, _A1>&); 00962 }; 00963 00964 /** 00965 * @brief Multimap equality comparison. 00966 * @param __x A %multimap. 00967 * @param __y A %multimap of the same type as @a __x. 00968 * @return True iff the size and elements of the maps are equal. 00969 * 00970 * This is an equivalence relation. It is linear in the size of the 00971 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00972 * and if corresponding elements compare equal. 00973 */ 00974 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00975 inline bool 00976 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00977 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00978 { return __x._M_t == __y._M_t; } 00979 00980 /** 00981 * @brief Multimap ordering relation. 00982 * @param __x A %multimap. 00983 * @param __y A %multimap of the same type as @a __x. 00984 * @return True iff @a x is lexicographically less than @a y. 00985 * 00986 * This is a total ordering relation. It is linear in the size of the 00987 * multimaps. The elements must be comparable with @c <. 00988 * 00989 * See std::lexicographical_compare() for how the determination is made. 00990 */ 00991 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00992 inline bool 00993 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00994 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00995 { return __x._M_t < __y._M_t; } 00996 00997 /// Based on operator== 00998 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00999 inline bool 01000 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 01001 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 01002 { return !(__x == __y); } 01003 01004 /// Based on operator< 01005 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01006 inline bool 01007 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 01008 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 01009 { return __y < __x; } 01010 01011 /// Based on operator< 01012 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01013 inline bool 01014 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 01015 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 01016 { return !(__y < __x); } 01017 01018 /// Based on operator< 01019 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01020 inline bool 01021 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 01022 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 01023 { return !(__x < __y); } 01024 01025 /// See std::multimap::swap(). 01026 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01027 inline void 01028 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 01029 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 01030 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 01031 { __x.swap(__y); } 01032 01033 _GLIBCXX_END_NAMESPACE_CONTAINER 01034 } // namespace std 01035 01036 #endif /* _STL_MULTIMAP_H */